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Quantum Riemannian geometry on any algebra

Quantum geometry of quantum groups

LTCC lectures 2011  (a bimodule approach — DVM) & Book w/ Beggs 2019

 Alg. Repn. Theory, 20 (2017)

Semiclassicalisation of quantum Riemannian geometry 
(C1(M),!, g,r) ! g r

w/ Beggs,  J. Geom. Phys. 114 (2017) 

Poisson tensor metric (flat) Poisson conn

If does not exist flat conn =>   non assoc ext. algebra{extra cotangent dimensions

E.g. 

1

2

0 (A,⌦, d, g,r, ...)

! Poisson structure (ABGN) g Kahler
M = ch(S) = {⇡1(S) ! G}/G = {G� bun, flat conn}



Ω
1 a((db)c)=(a(db))c `bimodule’

d : A → Ω
1 d(ab)=(da)b+a(db) `Leibniz rule’

space of 1-forms, e.g. `differentials’

Quantum differentials on an algebra A

require this to extend to a DGA Ω = TAΩ
1/I = ⊕nΩ

n, d
2

= 0

`surjectivity’{
∑

adb} = Ω
1

ker d = k.1 (`connected’)

Classically, C1(M) = ⌦0(M) ⇢ ⌦(M) = �i⌦
i(M)

⌦1
df =

X

i

@f

@xi
dxi

fdg = (dg)f 2 ⌦1

^ : ⌦⌦A ⌦ ! ⌦, d(! ^ ⌘) = (d!) ^ ⌘ + (�1)|!|! ^ d⌘

! ^ ⌘ = (�1)|!||⌘|⌘ ^ !, d2 = 0

algebra A over    we drop the (graded) commutativity, just keep:k

`graded Leibniz rule’

inner if exists ✓ 2 ⌦1, d = [✓, }



Thm   
bicovariant

Ω1(U(g)) ↔ Z1(g,Λ1)

surjective 
pre-Lie algebra  

◦ : g⊗ g → g [x, y] = x ◦ y − y ◦ x

6 SHAHN MAJID & WEN-QING TAO

Next we recall that a left pre-Lie algebra (also called Vinberg algebra) is defined
to be a vector space V equipped with a necessarily associative ‘product’ map ⇤ :
V ⇥ V ⇧ V s.t.

(4.4) (x ⇤ y) ⇤ z � (y ⇤ x) ⇤ z = x ⇤ (y ⇤ z)� y ⇤ (x ⇤ z).

In this case, V is necessarily a Lie algebra with Lie bracket given by

(4.5) [x, y]V := x ⇤ y � y ⇤ x

for all x, y ⌃ V , where the Jacobi identity holds due to (4.4.

Corollary 4.2. A connected and simply connected Poisson-Lie group G with Lie
algebra g admits a compatible left-invariant flat preconnection if and only if g�

admits a pre-Lie structure via �. This is bicovariant i� � obeys (3.3).

Proof. This is shown by (2.6) and (4.3) and is an interpretation of the preceding
Theorem 4.1. �

Note the first part does not seem to depend on the Lie algebra structure of g itself
*** seems remarkable, should check ***

Example 4.3. Let m be a finite-dimensional Lie algebra and G = m� be an abelian
Poisson-Lie group with its Kirillov-Kostant Poisson-Lie group structure {x, y} =
[x, y] for all x, y ⌃ m ⌅ C⇥(m�) or S(m) in an algebraic context. By Corollary 4.2,
this admits a compatible left-invariant flat preconnection i⇥ m admits a pre-Lie
algebra structure. Here � = ⇤ and

�x̂dy = d(x ⇤ y), ⌥x, y ⌃ m.

In fact the algebra and calculus in this example works to all orders. Thus the
quantisation of m� is U(m) regarded as a noncommutative coordinate algebra with
relations xy � yx = ⇥[x, y]. If m has an underlying pre-Lie algebra then the above
results lead to relations

[x, dy] = ⇥d(x ⇤ y), ⌥x, y ⌃ m

and one can check that this works exactly and not only to order ⇥ precisely as a con-
sequence of the pre-Lie algebra axiom. Indeed, according to [our paper] bicovariant
calculi on U(m) with left-invariant 1-forms m are classified by invertible 1-cocycles
in Z(m,m) and it is known ***reference needed*** that the latter correspond to
pre-Lie algebra structures for m.

Example 4.4. Let g be a quasi-triangular bialgebra with r-matrix r = r(1)⇥r(2) ⌃
g⇥ g. Then g acts on its dual g� by coadjoint action ad� and by Lemma 3.8 in [18]
g� becomes a left g-crossed module with �(⇤,⌅) = �⌦⇤, r(2)↵adr(1)⌅. To satisfy
compatibility (2.6), (g, r) is required to obey r+⇧x = 0 for any x ⌃ g, where
r+ = (r + r21)/2 is the symmetric part of r. In this case g� has a pre-Lie algebra
structure with �(⇤,⌅) = �⌦⇤, r(2)↵ad�r(1)⌅ by Corollary 4.2. We see in particular
that every finite-dimensional cotriangular Lie bialgebra is canonically a pre-Lie
algebra.

e.g. 

dx = 1⊗ ζ(x), Ω1 = U(g)⊗Λ1

⇒ Ω(U(g))

ζ ∈

by skew-symmetrisation of products of ⇤1

Nice problem: take your favourite algebra and classify all 
differential structures (perhaps with some symmetry)

[x, dy] = d(x � y)

Example                         (see later)[r, t] = λrg :

Example                          and torsion free flat connection g = Vect(M)

x � y = rxy, r[x,y]z = rxryz �ryrxz

⇤1 ={dy | y 2 g} ⇠= g

[x, y] = rxy �ryxA = U(di↵(M))

bicovariant connected classical dim
↔


