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A Classic Problem in Mathematics

Relation between curvature (differential geometry) and characteristic classes

(algebraic geometry)?

CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)

and ([R] = [c1(M)])H1,1(M). Geometric Nomenclature

Then ∃!(g̃, ω̃) such that ([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Rmk: c1(M) = 0⇔ Ricci-flat

THEOREM [S-T Yau, 1977-8; Fields 1982] Calabi-Yau: Kähler and Ricci-flat

Important example: dimC = 1, T 2 (elliptic curve)

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 2 / 98



A Opportune Development in Physics

String Theory:

The most important equation: 10 = 4 + 6
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String Phenomenology

Superstring: unifies QM + GR in 10 dimensions: X10

We live in some M4 (assume maximally symmetric)

Rµνρλ =
R

12
(gµρgνλ − gµλgνρ), R


= 0 Minkowski

> 0 de Sitter (dS)

< 0 anti-de Sitter (AdS)

10 = 4 + 6: two scenarios

1 SMALL: compactification X10 'M4 ×X6

2 LARGE: brane-world trapped on a 3-brane in 10-D

want: supersymmetry at intermediate scale (between string and EW)

want: classical vacuum of string theory on X10 preserves N = 1 SUSY in M4
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Heterotic Compactification

[Candelas-Horowitz-Strominger-Witten] (1986): δSUSY SHet = 0

S ∼
∫
d10x
√
ge−2Φ

[
R+ 4∂µΦ∂µΦ− 1

2 |H
′
3|2)− 1

g2
s

Tr |F2|2
]
+SUSY)

gravitino δεΨM=1,...,10 = ∇M ε− 1
4H

(3)
M ε

dilatino δελ = − 1
2ΓM∂MΦ ε+ 1

4H
(3)
M ε

adjoint YM δεχ = − 1
2F

(2)ε

Bianchi dH(3) = α′

4 [Tr(R ∧R)− Tr(F ∧ F )]

Assume H(3) = 0 (can generalise) ; Killing spinor equation:

δεΨM=1,...,10 = ∇M ε = 0 = ∇Mξ(xµ=1,...,4)η(ym=1,...,6)

External 4D Space: [∇µ,∇ν ]ξ(x) = 1
4RµνρσΓρσξ(x) = 0 ; R = 0⇒ M is

Minkowski (actually the universe is now believed to be dS)

Internal 6D Space: Rmn = 0 (but not necessarily max symmetric)
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Mille Viæ ducunt homines Romam . . .

X6 as a spin 6-manifold: holonomy group is SO(6) ' SU(4)

want covariant constant spinor: largest possible is SU(4)→ SU(3) with

4→ 3⊕ 1⇒ X6 has SU(3) holonomy

Thus ε(x1,...,4, y1,...,6) = ξ+ ⊗ η+(y) + ξ− ⊗ η−(y)

with η∗+ = η− and ξ constant

Define Jnm = iη†+γ
n
mη+ = −iη†−γnmη−, check: JnmJ

p
n = −δnm

Can show X6 is a Kähler manifold of dimC = 3, with SU(3) holonomy

Three other SUSY variation equations (recall H(3) = 0 by choice)

choose constant dilation Φ ; δε = 0

choose R = F (spin connection for gauge field): Bianchi satisfied

Also R = 0 so δεχ = 0
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Special Holonomy

For a Riemannian, spin manifold M of real dimension d, holonomy is Spin(d)

as double cover of SO(d) generically, but could have special holonomy

Holonomy H ⊂ Manifold Type (IFF)

U(d/2) Kähler

SU(d/2) Calabi-Yau

Sp(d/4) Hyper-Kähler

Sp(d/4)× Sp(1) Quaternionic-Kähler

X6 is Calabi-Yau

no-where vanishing holomorphic 3-form: Ω(3,0) = 1
3!Ωmnpdz

m ∧ dzn ∧ dzp

with Ωmnp := ηT− γ
[mγnγp] η−

check: dΩ = 0 but not exact; Ω ∧ Ω̄ ∼ Volume form
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Summary

Some equivalent Definitions for X6 Calabi-Yau Threefold

Kähler, c1(TX) = 0

Kähler, vanishing Ricci curvature

Kähler, holonomy ⊂ SU(n)

Kähler, nowhere vanishing global holomorphic 3-form (volume)

Covariant constant spinor

Canonical bundle (sheaf) KX :=
∧n

T ∗X ' OX

low-energy SUSY in 4D from string compactification
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Some Topological Properties I

Hodge Numbers hp,q(X) = dimHp,q

∂̄
(X)

Hodge decomposition and Betti Numbers: bk =
∑

p+q=k

hp,q(X)

Complex conjugation ; hp,q = hq,p

Hodge star (Poincaré) ; hp,q = hn−p,n−q

Hodge Diamond:

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,3 h2,1 h2,1 h0,3

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

Compact, connected, Kähler: h0,0 = 1 (constant functions)

If simply-connected:

π1(X) = 0 ; H1(X) = π1(X)/[ , ] = 0 ; h1,0 = h0,1 = 0
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Some Topological Properties II

Finally, CY3 has h3,0 = h0,3 = 1 [unique holomorphic 3-form], also

hp,0 = h3−p,0 by contracting (p, 0)-form with Ω̄ to give (p, 3)-form, then use

Poincaré duality to give (3− p, 0)-form

2-topological numbers for a (connected, simply connected) CY3:
1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(Kähler, Complex-Structure) : (h1,1, h2,1)

χ(X) = 2(h1,1 − h2,1)

Moduli Space of CY3 locally: M'M2,1 ×M1,1
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Explicit Examples of Calabi-Yau Manifolds

d = 1 Torus T 2 = S1 × S1

d = 2 K3 ; 4-torus: T 4 =
(
S1
)4

d = 3 CY3: Unclassified, billions known
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As Projective Varieties

Embed X into Pn as complete intersection of K polynomials

n = K + 3

Canonical bundle KX ' ∧dim(X)T ∗X ; algebraic condition for Calabi-Yau:

KX ' OX (indeed c1(TX) = 0)

Adjunction formula for subvariety X ⊂ A: KX = (KA ⊗N∗)|X

Recall KA=Pn ' OPn(−n− 1) and KX ' OX , thus:

degree(X) = n+ 1

Find only 5 solutions. These all have h1,1(X) = 1, inherited from the 1

Kähler class of Pn; called cyclic Calabi-Yau threefolds
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Cyclic Manifolds

Intersection A Configuration χ(X) h1,1(X) h2,1(X) d(X) c̃2(TX)

Quintic P4 [4|5] −200 1 101 5 10

Quadric and quartic P5 [5|2 4] −176 1 89 8 7

Two cubics P5 [5|3 3] −144 1 73 9 6

Cubic and 2 quadrics P6 [6|3 2 2] −144 1 73 12 5

Four quadrics P7 [7|2 2 2 2] −128 1 65 16 4

Euler numbers quite large, d(X) is volume normalisation

used standard matrix configuration notation

most famous example: Quintic 3-fold [4|5]

{
4∑
i=0

x5
i = 0} ⊂ P4

[x0:...x4]

written as Fermat quintic, also has h2,1(X) = 101 deformation parameters
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Part I

Strings and the Compact Calabi-Yau Landscape
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Triadophilia: A 20-year search

A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)

E8 ⊃ SU(3)× SU(2)× U(1) Natural Gauge Unification

Mathematically succinct

Witten: “still the best hope for the real world”

CY3 X, tangent bundle SU(3)⇒ E6 GUT: commutant E8 → SU(3)× E6

(generalize later)

Particle Spectrum:
Generation n27 = h1(X,TX) = h2,1

∂
(X)

Anti-Generation n27 = h1(X,TX∗) = h1,1

∂
(X)

Net-generation: χ = 2(h1,1 − h2,1)

Question: Are there Calabi-Yau threefolds with Euler character ±6?

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 15 / 98



Triadophilia: A 20-year search

A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)

E8 ⊃ SU(3)× SU(2)× U(1) Natural Gauge Unification

Mathematically succinct

Witten: “still the best hope for the real world”

CY3 X, tangent bundle SU(3)⇒ E6 GUT: commutant E8 → SU(3)× E6

(generalize later)

Particle Spectrum:
Generation n27 = h1(X,TX) = h2,1

∂
(X)

Anti-Generation n27 = h1(X,TX∗) = h1,1

∂
(X)

Net-generation: χ = 2(h1,1 − h2,1)

Question: Are there Calabi-Yau threefolds with Euler character ±6?

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 15 / 98



Complete Intersection Calabi-Yau (CICY) 3-folds

immediately: Quintic Q in P4 is CY3, recall: Qh
1,1,h2,1

χ = Q1,101
−200 so too may

generations (even with quotient −200 6∈ 3Z)

[Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)

dim(Ambient space) - #(defining Eq.) = 3 (complete intersection)

M =


n1 q1

1 q2
1 . . . qK1

n2 q1
2 q2

2 . . . qK2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

nm q1
m q2

m . . . qKm


m×K

− K eqns of multi-degree qij ∈ Z≥0

embedded in Pn1 × . . .× Pnm

− c1(X) = 0 ;
K∑
j=1

qjr = nr + 1

− MT also CICY

Famous Examples
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The First Data-sets in Mathematical Physics/Geometry I

Problem: classify all configuration matrices; employed the best computers at

the time (CERN supercomputer)

q.v. magnetic tape and dot-matrix printout in Philip’s office

7890 matrices from 1× 1 to max(row) = 12, max(col) = 15; with qij ∈ [0, 5]

266 distinct Hodge pairs (h1,1, h2,1) = (1, 65), . . . , (19, 19)

70 distinct Euler χ ∈ [−200, 0] (all negative)

[V. Braun, 1003.3235] : 195 have freely-acting symmetries (quotients), 37

different finite groups (from Z2 to Z8 oH8)

Rmk: Integration pulls back to ambient product of projective space A∫
X

· =
∫
A

µ ∧ · , µ :=

K∧
j=1

(
m∑
r=1

qjrJr

)
.
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Topological Quantities

Chern classes of CICY

cr1(TX) = 0

crs2 (TX) = 1
2

[
−δrs(nr + 1) +

K∑
j=1

qrj q
s
j

]

crst3 (TX) = 1
3

[
δrst(nr + 1)−

K∑
j=1

qrj q
s
jq
t
j

]

Triple intersection numbers: drst =
∫
X
· =

∫
A
Jr ∧ Js ∧ Jt

Euler number: χ(X) = Coefficient(crst3 JrJsJt · µ,
∏m
r=1 J

nr
r )

As always, computing individual terms (h1,1, h2,1) hard even though

h1,1 − h2,1 = 1
2χ (index theorem)
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Computing Hodge Numbers: Sketch

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ��
���

�: 0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X) (Cf. Hübsch)
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Distribution

h1,1 h2,1
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The First Data-sets in Mathematical Physics/Geometry II

[Candelas-Lynker-Schimmrigk, 1990] Hypersurfaces in Weighted P4

generic homog deg =
4∑
i=0

wi polynomial in WP4
[w0:w1:w2:w3:w4] '

(C5 − {0})/(x0, x1, x2, x3, x4) ∼ (λw0x0, λ
w1x1, λ

w2x2, λ
w3x3, λ

w4x4)

specified by a single integer 5-vector: wi

Rmk: ambient WP4 is singular (need to resolve)

7555 inequivalent 5-vectors wi

2780 Hodge pairs

χ ∈ [−971, 469]
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The age of data science in mathe-

matical physics/string theory not

as recent as you might think
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Elliptically Fibered CY3: [Gross, Morrison-Vafa, 1994]

X elliptically fibered over some base B: as Weierstraß model in

P2
[x:y:z]-bundle over B (g2, g3 complex structure coeff)

zy2 = 4x3 − g2xz
2 − g3z

3

x, y, z, g2, g3 must be sections of powers of some line bundle L over B

Specifically (x, y, z, g2, g3) are global sections of (L⊕2,L⊕3,OB ,L⊕4,L⊕6)

c1(TX) = 0⇒ L ' K−1
B ⇒ B highly constrained :

1 del Pezzo surface dPr=1,...,9: P2 blown up at r points

2 Hirzebruch surface Fr=0,...12: P1-bundle over P1

3 Enriques surface E: involution of K3

4 Blowups of Fr
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Ne Plus Ultra: The Kreuzer-Skarke Dataset

Generalize WP4, take Toric Variety A(∆n) and consider hypersurface therein

A(∆n) is special: it is constructed from a reflexive polytope Lattice Polytopes

THM [Batyrev-Borisov, ’90s] anti-canonical divisor in X(∆n) gives a smooth

Calabi-Yau (n− 1)-fold as hypersurface:

0 =
∑
m∈∆

Cm

k∏
ρ=1

x〈m,vρ〉+1
ρ , ∆◦ = {v ∈ R4 | 〈m,v〉 ≥ −1 ∀m ∈ ∆}

vρ vertices of ∆.

Simplest case: A = P4 and we have quintic [4|5] again.

∆ :

m1 = (−1,−1,−1,−1),

m2 = ( 4,−1,−1,−1),

m3 = (−1, 4,−1,−1),

m4 = (−1,−1, 4,−1),

m5 = (−1,−1,−1, 4) ,

∆◦ :

v1 = (1, 0, 0, 0),

v2 = (0, 1, 0, 0),

v3 = (0, 0, 1, 0),

v4 = (0, 0, 0, 1),

v5 = (−1,−1,−1,−1) .
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Reflexive Polygons: 16 special elliptic curves

THM (classical): All ∆2 are

GL(2;Z) equivalent to one

of the 16

→ #vertices: 3, . . . , 6

↑ #lattice points: 4, . . . , 10

4 self-dual

5 smooth X(∆2) = toric

del Pezzo surfaces:

dP0,1,2,3, P1 × P1 (smooth

toric Fano surfaces)
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Known Classification Results

GL(n;Z)-equivalence classes of reflexive ∆n finite for each n

Kreuzer†-Skarke (Using PALP) [1990s]: a fascinating sequence

dimension 1 2 3 4 . . .

# Reflexive Polytopes 1 16 4319 473,800,776 . . .

# Regular 1 5 18 124 . . .

n ≥ 5 still not classified; generating function also not known

Smooth ones known for a few more dimensions (Kreuzer-Nill, Øbro,

Paffenholz): {1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721 . . .}

n = 2, 3 built into SAGE
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Tour de Force: Kreuzer-Skarke

Kreuzer†-Skarke 1997-2002: 473,800,776 ∆4

AT LEAST this many CY3 hypersurfaces in A(∆4): CY3 depends on

triangulation (resolution) of ∆, but Hodge numbers only depend on ∆4

(Batyrev-Borisov):

h1,1(X) = `(∆◦)−
∑

codimθ◦=1

`◦(θ◦) +
∑

codimθ◦=2

`◦(θ◦)`◦(θ)− 5;

h1,2(X) = `(∆)−
∑

codimθ=1

`◦(θ) +
∑

codimθ=2

`◦(θ)`◦(θ◦)− 5 .

Dual polytope ∆↔ ∆◦ = mirror symmetry

Vienna group (KS, Knapp,. . . ), Oxford group (Candelas, Lukas, YHH, . . . ),

MIT group (Taylor,Johnson, Wang, . . . ), Northeastern/Wits Collab (Nelson,

Jejjala, YHH), Virginia Tech (Anderson, Gray, Lee, . . . )

Tsinghua/London/Oxford Collab (Yau, Seong, YHH)
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Georgia O’Keefe

30,108 distinct Hodge pairs, χ ∈ [−496, 496];

(h1,1, h2,1) = (27, 27) dominates: 910113 instances

-960 -480 0 480 960

100

200

300

400

500

-960 -480 0 480 960

100

200

300

400

500

In Philip’s Office YHH (1308.0186)
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Refined Structure in KS Data

DATABASES:

http://hep.itp.tuwien.ac.at/~kreuzer/CY/

http://www.rossealtman.com/

Altman-Gray-YHH-Jejjala-Nelson 2014-17 triangulate ∆4 (orders more than

1/2-billion): up to h1,1 = 7

Candelas-Constantin-Davies-Mishra 2011-17 special small Hodge numbers

Taylor, Johnson, Wang et al. 2012-17 elliptic fibrations

YHH-Jejjala-Pontiggia 2016 distribution of Hodge, χ, Pseudo-Voigt

http://hep.itp.tuwien.ac.at/~kreuzer/CY/
http://www.rossealtman.com/


KS stats
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The Compact CY3 Landscape

20 years of research by mathematicians and physicists

1010 million data-points (and growing)

 S

Calabi−Yau Threefolds

KS
Toric Hypersurface

Elliptic Fibration

CICY
 Q
.

.
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CY3 Compactification: Recent Development

E6 GUTs less favourable, SU(5) and SO(10) GUTs: general embedding

Instead of TX, use (poly-)stable holomorphic vector bundle V

LE particles ∼ massless modes of V -twisted Dirac Operator: /∇X,V Ψ = 0

massless modes of /∇X,V
1:1←→ V -valued cohomology groups

Gauge group(V ) = G = SU(n), n = 3, 4, 5, gives H = Commutant(G,E8):

E8 → G ×H Breaking Pattern

SU(3) × E6 248 → (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5̄) ⊕ (24, 1)

Particle content
Decomposition Cohomologies

SU(3) × E6 n27 = h1(V ), n
27

= h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4) × SO(10) n16 = h1(V ), n
16

= h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5) × SU(5) n10 = h1(V ∗), n
10

= h1(V ), n5 = h1(∧2V ), n
5

= h1(∧2V ∗), n1 = h1(V ⊗ V ∗)

Further to SM: H
Wilson Line−→ SU(3)× SU(2)× U(1)
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Ubi Materia, Ibi Geometria

Issues in low-energy physics ∼ Precise questions in Alg Geo of (X,V )

Particle Content ∼ (tensor powers) V Equivariant Bundle Cohomology on X

LE SUSY ∼ Hermitian Yang-Mills connection ∼ Bundle Stability

Yukawa ∼ Trilinear (Yoneda) composition

Doublet-Triplet splitting ∼ representation of fundamental group of X

e.g., for π1(X) = Z3 × Z3 WL:
Cohomology Representation Multiplicity Name

[α2
1α2 ⊗H1(X,V )]inv (3, 2)1,1 3 left-handed quark

[α2
1 ⊗H

1(X,V )]inv (1, 1)6,3 3 left-handed anti-lepton

[α2
1α

2
2 ⊗H

1(X,V )]inv (3, 1)−4,−1 3 left-handed anti-up

[α2
2 ⊗H

1(X,V )]inv (3, 1)2,−1 3 left-handed an ti-down

[H1(X,V )]inv (1, 2)−3,−3 3 left-handed lepton

[α1 ⊗H1(X,V )]inv (1, 1)0,3 3 left-handed anti-neutrino

[α1 ⊗H1(X,∧2V )]inv (1, 2)3,0 1 up Higgs

[α2
1 ⊗H

1(X,∧2V )]inv (1, 2)−3,0 1 down Higgs
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A Heterotic Standard Model

[Braun-YHH-Ovrut-Pantev] (hep-th/0512177, 0601204)

X

B1

π1

<
B2

π2

>

P1

β2

<

β1
>

- X19,19
0 double-fibration over dP9 π1(X) = Z3 × Z3

- V stable SU(4) bundle: Generalised Serre Constrct

- Couple to Z3 × Z3 Wilson Line

- Matter = Z3 × Z3-Equivariant cohomology on X3,3
0

Exact SU(3)× SU(2)× U(1)× U(1)B−L spectrum:

No exotics; no anti-generation; 1 pair of Higgs; RH Neutrino

SU(5)→ SU(3)× SU(2)× U(1) version [Bouchard-Cvetic-Donagi]

same manifold

X19,19
0 is a CICY! Obvervatio Curiosa
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Algorithmic Compactification

Searching the MSSM, Sui Generis?

∼ 107 Spectral Cover bundles [Donagi, Friedman-Morgan-Witten, 1996-8] over

elliptically fibered CY3 (2005-9), [Donagi-YHH-Ovrut-Pantev-Reinbacher,

Gabella-YHH-Lukas,. . . ]

∼ 105 (Monad) Bundles over all CICYs [Anderson-Gray-YHH-Lukas, 2007-9]

Monad Bundles over KS YHH-Kreuzer-Lee-Lukas 2010-11: ∼ 200 in 105 3-gens

culminating in .. Stable Sum of Line Bundles over CICYs

(Oxford-Penn-Virginia 2012-) Anderson-Gray-Lukas-Ovrut-Palti ∼ 200 in 1010 MSSM

meanwhile . . . LANDSCAPE grew with D-branes Polchinski 1995, M-Theory/G2

Witten, 1995, F-Theory/4-folds Katz-Morrison-Vafa, 1996, AdS/CFT Maldacena 1998,

Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, . . .
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Part II

Branes and the Non-Compact Calabi-Yau Landscape
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Recall: D-branes in Type IIB

D-branes Dirichlet Boundary conditions for open strings;

D-brane world-volumes: Dp has p+ 1-D w.v.

D1, D3, . . . , D9 of dimensions

1 + 1, . . . , 9 + 1;

DYNAMICAL: Carry charges

(2, 4, . . . , 10 forms)
∫
Dp

Q(p+1)

i.e., Open strings carry charges (Chan-Paton factors) ⇒

D-branes = Supports of Sheafs (strictly: D-brane = object in Db(Coh))
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Another 10 = 4 + 6

important property: GAUGE ENHANCEMENT

i.e., world-volume sees a U(1)-bundle

Bringing together (stack) n parallel D-branes U(1)n → U(n)

SUMMARY Type IIB: 10D, Closed Strings, Open Strings/Dp-Branes, p odd

R1,9 ' R1,3(world-volume of D3)×X6(transverse non-compact CY3)

SIMPLEST CASE: transverse CY3 = C3

Original Maldacena’s AdS/CFT (1997): N = 4 U(n) SYM on 4D probe w.v.

Gauge Fields Aµ: Hom(Cn,Cn)

Matter Fields R = 4,6: Adjoint (Weyl) fermions Ψ4
IJ : 4⊗Hom(Cn,Cn)

Bosons Φ6
IJ : 6⊗Hom(Cn,Cn)
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A Geometer’s AdS/CFT

Rep. Variety(Quiver) ∼ VMS(SUSY QFT) ∼ affine/singular variety

e.g N = 1 Quiver variety = vacuum of F- & D-flatness = non-compact CY3

N = 4 U(N) Yang-Mills

3 adjoint fields X,Y, Z with superpotential W = Tr(XY Z −XZY )

X

YZ

N D3-branes (w.v. is N = 4 in R3,1) ⊥ R6

' C3 = Vacuum Moduli Space

VMS ' affine non-compact CY3 by construction

QUIVER = Finite graph (label = rk(gauge factor)) + relations from W

Matter Content: Nodes + arrows

Relations (F-Terms): DiW = 0 ; [X,Y ] = [Y, Z] = [X,Z] = 0

Here C3 is real cone over S5 (simplest Sasaki-Einstein 5-manifold), others?
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Orbifolds (V-manifolds)

Orbifolds: next best thing to C3 (Satake 60’s);

Transverse CY3 ' C3/{Γ ⊂ SU(k)} that admit crepant resolution, i.e.,

resolve to Calabi-Yau; Γ discrete finite subgroup of holonomy SU(k); k = 2, 3

Γ-Projection: γAµγ−1 = Aµ and ΨIJ = R(γ)γΨIJγ
−1; i.e.,

Gauge Group U(n)⇒
∏
i U(Ni)

Matter fields decompose as

(R⊗ hom (Cn,Cn))Γ =
⊕

i,j R⊗
(
CNi ⊗ CNj∗ ⊗ ri ⊗ r∗j

)Γ
=

⊕
i,j a

R
ij

(
CNi ⊗ CNj∗

)
,

where R⊗ ri =
⊕
j

aRijrj

a4ij bi-fundamental fermions: (Ni, N̄j) of SU(Ni)× SU(Nj)

a6ij bi-fundamental bosons: (Ni, N̄j) of SU(Ni)× SU(Nj)
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Quivers

Parent
Γ−→ Orbifold Theory

SUSY N = 4 ;

N = 2, for Γ ⊂ SU(2)

N = 1, for Γ ⊂ SU(3)

N = 0, for Γ ⊂ {SU(4) ' SO(6)}

Gauge

Group
U(n) ;

∏
i

U(Ni),
∑
i

Ni dim ri = n

Fermion Ψ4
IJ ; Ψij

fij

Boson Φ6
IJ ; Φijfij R⊗ ri =

⊕
j

aRijrj

I, J = 1, ..., n; fij = 1, ..., a
R=4,6
ij

In physics: Douglas & Moore (9603167), C2/Zn; Johnson & Meyers

(9610140) Formalised in Lawrence, Nekrasov & Vafa, (9803015);
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Quivers: Finite Graphs with Representation

A Graphical way to represent this data

Node i ∼ gauge factor U(Ni)

Arrow i→ j ∼ bi-fundamental (Ni, N̄j)

e.g.

Adjacency Matrix

Aij =


0 1 0

0 0 1

1 0 0



Gabriel: 1970s: x1 ∈ Hom(Cn1 ,Cn2), etc.
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McKay Correspondence

Take the C2/(Γ ⊂ SU(2))× C case: Discrete Finite Subgroups of SU(2)

F. Klein (1884) (double covers of those of SO(3), i.e., symmetry groups of

the Platonic solids)

Group Name Order

An ' Zn+1 Cyclic n+ 1

Dn Binary Dihedral 2n

E6 Binary Tetrahedral 24

E7 Binary Octahedral (Cube) 48

E8 Binary Icosahedral (Dodecadedron) 120

McKay (1980) Take the Clebsch-Gordan decomposition for R = fundamental

2 representation of SU(2)
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ADE-ology

2⊗ ri =
⊕
j

a2ijrj and treat a2ij as adjacency matrix

McKay Quivers (rmk: Cartan matrix symmetric ; graph unoriented)

QUIVERS = DYNKIN DIAG. OF CORRESPONDING AFFINE LIE

ALGEBRA!!

2

.
.
.
.

A
n

1

1

1

1
1

1

7

2

2 11 3 34 2

E

8
E

3

1 2 2453 64

1

1 1

2

2 23

6
E

. . . . .

D
n

1

1

1

1

2 2
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Geometrical McKay

Geometrically: González-Springberg & Verdier (1981)

Crepant Resolution K3→ C2/Γ

An : xy + zn = 0

Dn : x2 + y2z + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

Intersection matrix of −2 exceptional curves in the blowup ; Quiver

Bridgeland-King-Reid (1999) Use Fourier-Mukai: McKay as an

auto-equivalence in Db(coh(X̃/G)) = Db(cohG(X))

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 45 / 98



CY3 case: C3/(Γ ⊂ SU(3))

McKay Quiver ⇒ N = 2 SUSY gauge theory on 4D world-volume

N = 1 SUSY: Need discrete finite groups Γ ⊂ SU(3)

Classification: Blichfeldt (1917)

Infinite Series ∆(3n2),∆(6n2)

Exceptionals Σ36×3,Σ60×3,Σ168×3,Σ216×3,Σ360×3

Gives chiral N = 1 gauge theories in 4D wv of D3-probe

most phenomenologically interesting

Hanany & YHH hep-th/9811183

Rmk: Crepant Resolutions to CY3 and Generalised McKay (Reid, Ito et al.)

not as well established
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SU(3) quivers and N = 1 gauge theories

Γ ⊂ SU(3) Gauge Group

Ân ∼= Zn+1 (1n+1)

Zk × Z
k′ (1kk

′
)∗

D̂n (14, 2n−3)

Ê6 ∼= T (13, 23, 3)

Ê7 ∼= O (12, 22, 32, 4)

Ê8 ∼= I (1, 22, 32, 42, 5, 6)

E6 ∼= T (13, 3)

E7 ∼= O (12, 2, 32)

E8 ∼= I (1, 32, 4, 5)

∆
3n2 (n = 0 mod 3) (19, 3

n2

3
−1

)∗

∆
3n2 (n 6= 0 mod 3) (13, 3

n2−1
3 )∗

∆
6n2 (n 6= 0 mod 3) (12, 2, 32(n−1), 6

n2−3n+2
6 )∗

Σ168 (1, 32, 6, 7, 8)∗

Σ216 (13, 23, 3, 83)

Σ36×3 (14, 38, 42)∗

Σ216×3 (13, 23, 37, 66, 83, 92)∗

Σ360×3 (1, 34, 52, 62, 82, 93, 10, 152)∗
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DICTIONARY: Quivers & Gauge Theory

S =
∫
d4x [

∫
d2θd2θ̄ Φ†ie

V Φi +
(

1
4g2

∫
d2θ TrWαWα +

∫
d2θ W (Φ) + c.c.

)
]

W = superpotential V (φi, φ̄i) =
∑
i

∣∣∣∂W∂φi ∣∣∣2 + g2

4 (
∑
i qi|φi|2)2

Encode into QUIVER (rep of finite labelled graph with relations):

k nodes, dim vec (N1, . . . , Nk)
∏k
j=1 U(Nj) gauge group

Arrow i→ j bi-fund Xij field ( , ) of U(Ni)× U(Nj)

Loop i→ i adjoint φi field of U(Ni)

Cycles Gauge Invariant Operator

2-cycles Mass-terms

W =
∑
ci cyclesi Superpotenital

Relations Jacobian of W (φi, Xij)

VACUUM ∼ V (φi, φ̄i) = 0⇒


∂W

∂φi,Xi
= 0 F-TERMS∑

i

qi|φi|2 + qk|Xk| = 0 D-TERMS

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 48 / 98



Another Famous Example: Conifold

SU(N)× SU(N) gauge theory with 4 bi-fundamental fields

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVER

SU(N) SU(N)

Ai=1,2

Bj=1,2

W = Tr(εilεjkAiBjAlBk)

D3-branes transverse to the conifold singularity = ({uv = wz} ⊂ C4) =

VMS (Klebanov-Witten 1999] N = 1 “conifold” Theory)

# gauge factors = Ng = 2; # fields = Nf = 4; # terms in W = Nw = 2

Observatio Curiosa: Ng −Nf +Nw = 0, as with C3, true for almost all

known cases in AdS5/CFT4
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The Landscape of Affine (Singular) CY3

2 decade programme of the School of A. Hanany:

U(N)

N D3−Branes

World−Volume = 

Quiver Gauge Theory

CY3 Cone

Sasaki−Einstein 5−fold

Toric

Singularities

Generic

Orbifolds

del Pezzo

Abelian

Orbifolds

Local CY3

C

C
3.

.

Orbifolds: C3/(Γ ⊂ SU(3)) Generalized McKay Correspondence

(Hanany-YHH, 98); Fano (del Pezzo): dP0,...,8 (w/ Hanany,Feng, Franco, et

al. 98 - 00); LARGEST FAMILY by far Toric: e.g., conifold, Y p,q, Lp,q . . .

Computational Algebraic Geometry
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M Toric CY3 ←→ Bipartite Graph on T 2

Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks,

Vafa, Vegh, Yamazaki, Zaffaroni . . .

Ng −Nf +Nw = 0 is Euler relation for a tiling of torus

Jac(W ) = binomial ideal (toric): bipartite Notation for Toric Cones

X

YZ

W = Tr(XY Z −XZY )

→

1 1 1 1

1 1 1

1 1 1 1

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVERW = Tr(εilεjkAiBjAlBk)

→
Graph Dual

>>

>>

B
1,2

A
1,2

1 2

Dimer Model on Torus

2 2

2 2

A1

A2

B1

B2

2 2

22

2

2 2

2

1

1

1

1

1

1

11

1

1

1

1

1
QUIVER

DIMER
Fundamental Region
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Toric CY3, Mirror Symmetry & Bipartite Tilings

Mirror Symmetry [Strominger-Yau-Zaslow; Hori-Vafa]

D3-brane on CY3 ; D6-branes wrapping 3-cycles in mirror CY3

[Feng-Kennaway-YHH-Vafa] torus T 2 lives in T 3 of mirror symmetry;

Tropical Geometry

THEOREM: [R. Böckland, N. Broomhead, A. Craw, A. King, K. Ueda . . . ]

The (coherent component of) VMS as representation variety of a quiver is an

affine (non-compact, possibly singular) toric Calabi-Yau variety of complex

dimension 3 ⇔ the quiver + superpotential is graph dual to a bipartite graph

drawn on T 2

Rmk: Each ⇒ SCFT in 3+1-d
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SUMMARY: C3, Hexagonal Tilings, SYM

N = 1 SYM = D3-branes transverse to C3 = C(S5) = hexagonal bipartite tiling
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SUMMARY: Conifold and Square Tilings

Alga

1 2

12

2 1

A

B

1

1

A 2

B2

A 2

B 2B 1

Periodic Quiver
W encoded

>>

>>

B
1,2

A
1,2

Quiver

W = Tr(A1B1A2B2 − A1B2A2B1)

1 2

(1,0)(0,0)

(0,1) (1,1)

Toric Diagram

Dimer Model

−Z

−W

− Z W

det K(Z,W)       = 1 − Z − W − W Z
1 x 1

−π

π

π

−π

0

(p,q)−Web

Draw on torus

Geometric

Engineering

Graph Dual

Graph Dual

Period Tiling

of Plane

Kastelyn Matrix

Projection

Newton

Polynomial

Projection

Amoeba
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A QFT Duality & a Quiver Transformation

Seiberg (1994): dual quantum field theories, in particular same VMS
2 theories: Direct Electric theory: Nc with Nf flavours; Dual Magnetic
theory: Nf −Nc (take 3

2Nc ≤ Nf ≤ 3Nc) with Nf flavours

SU(Nc) SU(Nf )L SU(Nf )R

Q 1

Q′ 1

SU(Nf −Nc) SU(Nf )L SU(Nf )R

q 1

q′ 1

M 1

W = 0 W = Mqq′

Feng-Hanany-YHH (2000) using Hanany-Witten (1996)

[cf. Cachazo-Intriligator-Katz-Vafa, 2001];

Fomin-Zelevinsky [2000]: cluster mutation, completely independently!

Seiberg

f Nf

Nc

Q Q’

Nf Nf

NcNf −

q q’

M W = M q q’

N
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A Quiver Duality from Seiberg Duality

We have quiver labeled by (Nc)i and arrows aij :

1 Pick dualisation node i0 with Nc, an define:
Iin := nodes having arrows going into i0

Iout := nodes having arrow coming from i0

Ino := nodes unconnected with i0

2 Nc → Nf −Nc (where Nf =
∑
i∈Iin

ai,i0 =
∑

i∈Iout
ai0,i)

3 Reverse arrows going in or out of i0, leave Ino, and change affected nodes:

adualij =

 aji if either i, j = i0

aij − ai0iaji0 if both A ∈ Iout, B ∈ Iin

If negative, take it to mean −adual arrows from j to i.

4 Generate W term

Toric Seiberg Duality
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Grothendieck’s Dessin d’Enfant In Piam Memoriam

Bely̌ı Map: Σ smooth compact Riemann surface, rational map β : Σ −→ P1

ramified only at (0, 1,∞)

Theorem [Bely̌ı]: β exists ⇔ Σ can be defined over Q; (β,Σ) Bely̌ı Pair

A Bipartite graph on Σ

label each β−1(0) black with valency = ramification index;

likewise β−1(1) white;

then β−1(∞) fixed to live one per face

Dessin d’Enfant = β−1([0, 1] ∈ P1)

Ramification data / Passport:


r0(1), r0(2), . . . , r0(B)

r1(1), r1(2), . . . , r1(W )

r∞(1), r∞(2), . . . , r∞(I)


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Permutation Triples

equivalent description Permutation Triple: Let there be d edges in the

bipartite graph and consider symmetric group Sd, define in cycle-notation

σB = (. . .)r0(1)(. . .)r0(2) . . . (. . .)r0(B)

σW = (. . .)r1(1)(. . .)r1(2) . . . (. . .)r1(W )

σBσWσ∞ = I

encodes how the sheets are permuted at the ramification points;

Example: σB = σW = σ∞ = (123)

T2 : y2 = x3 + 1
β= 1

2
(1+y)
−→ P1 Local Coordinates on T2 Ramification Index of β

(0,−1)
β7→ 0 (x, y) ∼ (ε,−1− 1

2 ε
3) 3

(0, 1)
β7→ 1 (x, y) ∼ (ε, 1 + 1

2 ε
3) 3

(∞,∞)
β7→ ∞ (x, y) ∼ (ε−2, ε−3) 3
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Gauge Theories and Dessins

Toric CY3 Quiver ; bipartite tiling of T 2 ; Bely̌ı pair

(
Elliptic Curve E, β : E −→ P1

)
Our most familiar example of N = 4 super-Yang-Mills:

Theory Toric Diag Bely̌ı Pair Dessin on T 2 (dimer)

X

YZ

W = Tr(X[Y,Z])

(0,0,1)

(1,0,0)

(0,1,0)

M' C3

y2 = x3 + 1

β(x, y) = y+1
2

1 1 1 1

1 1 1

1 1 1 1
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Klebanov-Witten’s Conifold Theory

Theory Toric Diag

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVERW = Tr(εilεjkAiBjAlBk)

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVERM' {uv − wz = 0} ⊂ C4

Bely̌ı Pair Dessin on T 2 (dimer)

y2 = x(x− 1)(x− 1
2 )

β(x, y) = x2

2x−1

Graph Dual

>>

>>

B
1,2

A
1,2

1 2

Dimer Model on Torus

2 2

2 2

A1

A2

B1

B2

2 2

22

2

2 2

2

1

1

1

1

1

1

11

1

1

1

1

1
QUIVER

DIMER
Fundamental Region
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Plethora of Non-Trivial Examples

e.g., Cone over F0 ' P1 × P1 (zeroth Hirzebruch surface);

Theory Toric Diag

1

4

2

3

W = X1
14X

4
43X

2
31 +X2

14X
2
43X

1
31 +X1

24X
1
43X

1
32+

+X2
24X

3
43X

2
32 −X

1
43X

1
31X

1
14 −X

2
43X

2
32X

1
24−

−X3
43X

2
31X

2
14 −X

4
43X

1
32X

2
24

M'Hirzebruch 0

Bely̌ı Pair Dessin on T 2 (dimer)

y2 = x− x3

β(x, y) =
i(x2− 3

√
−1)

3

3
√

3x2(x2−1)

2

3

4 2

3

4 2

3

4

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

1 1 1
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Rigidity & Transcendence Degree

Dessins are rigid: in particular elliptic curve has fixed τ

In gauge theory:

R-charge ∼ length(edges), choose isoradial embedding (all nodes are on circles

of equal radius); then fix by a-max = volume Z-min of Sasaki-Einstein

(Intriligator-Wecht, Martelli-Sparks-Yau); Futaki-Donaldson Inv.

R-charges and normalized volume of dual geometry are algebraic numbers

Seiberg Duality/Cluster Mutation = so-called “Urban Renewal”

R1

R2

R3

R4

U12

U23U34

U41

S1

S2

S3

S4

U12

U23U34

U41

T12

T23T34

T41
• j(τ) of isoradial dimer invariant:

• transcendence degree /Q

of R-charges invariant

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 62 / 98



SUMMARY

D3-Brane

Toric CY3

Quiver
Gauge Theory

Physics
Representation 
Theory

Bipartite
Graph on 
Torus

Mirror Symmetry

Amoebae

Algebraic
Geometry

Singularity
Resolution

Number
Theory

Dessins
D’Enfant

Seiberg/

Mutation

Monodromy

isogeny
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Open Problems

relation amongst the 3 complex structures?

Physics Geometry Number Theory

τ(a-max/Vol-min) τ(mirror) τ(dessin)

Define Dg≥3 := {dessins of valency ≥ 3 on Σg} then Observation:

Ψ : Dg≥3 �
{

affine toric CY 2g+1
}

Ψ surjection (by having CY 2g+1 as representation variety of dual quiver)

Conjecture: Ψ−1(M) in orbits of cluster mutation/Seiberg/urbal renewal

Question: Gal(Q/Q) acts on Dg≥3 (faithful for g = 0,1), what is action on{
affine toric CY 2g+1

}
and on quiver gauge theory?
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Part III

WWJD: What Would JPython/AI Do?

YHH, 1706.02714, PLB 774, 2017
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SUMMARY: Algorithms and Datasets in String Theory

Growing databases and computational algorithms motivated by string theory

Archetypical Problems

Classify configurations (typically integer matrices: polyotope, adjacency, . . . )

Compute geometrical quantity algorithmically

toric ; combinatorics;

quotient singularities ; rep. finite groups;

generically ; ideals in polynomial rings;

Numerical geometry (homotopy continuation);

Cohomolgy (spectral sequences, Adjunction, Euler sequences)

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer
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Where we stand . . .

The Good Last 10-15 years: several international groups have bitten the bullet

Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, . . . computed

many geometrical/physical quantities and compiled them into

various databases Landscape Data (109∼10 entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential),

triangulation (exponential), Gröbner basis (double-exponential)

. . . e.g., how to construct stable bundles over the � 473 million KS

CY3? Sifting through for MSSM not possible . . .

The ??? Borrow new techniques from “Big Data” revolution
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A Prototypical Question

Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

How to set up a bijection that takes these to {1, 2, . . . , 9, 0}? Find a clever

Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

What does your iPhone/tablet do? What does Google do?

Take large sample, take a few hundred thousand (e.g. NIST database)

. . .

Machine-Learn: (1) Data Acquisition; (2) Setup Neural Network (NN); (3)

Train NN. generically, if the NN is sufficiently complex, called Deep Learning
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A Single Neuron: The Perceptron

began in 1957 (!!) in early AI experiments (using CdS photo-cells)

DEF: Imitates a neuron: activates upon certain inputs, so define

Activation Function f(zi) for input tensor zi for some multi-index i;

consider: f(wizi + b) with wi weights and b bias/off-set;

typically, f(z) is sigmoid, Tanh, etc.

Given training data: D = {(x(j)
i , d(j)} with input xi and known output d(j),

minimize

SD =
∑
j

(
f(
∑
i

wix
(j)
i + b)− d(j)

)2

to find optimal wi and b ; “learning”

Essentially (non-linear) regression
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The Neural Network: network of neurons ; the “brain”

DEF: a connected graph, each node is a perceptron (Beta-version

implemented on Mathematica 11.1 +)

1 adjustable weights/bias;

2 distinguished nodes: 1 set for input and 1 for output;

3 iterated training rounds.

Simple case: forward directed only,

called multilayer perceptron

use the simple MLP: e.g., Sigmoid → Linear → Tanh → Summation

Essentially how brain learns complex tasks; apply to our Landscape Data
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Hypersurfaces in WP4: Warmup I

Oftentimes, questions in pheno are qualitative, e.g.,

large # complex structure how many have, say, h2,1 > 50?

[Candelas-Lynker-Schimmrigk] Landau-Ginzburg methods: many hours; using

Euler sequence/Adjunction: many more hours

(a) (b)

(a) Mirror plot of

(χ, h1,1 + h2,1)

(b) Distribution of

h2,1

With the MLP NN, 500 training rounds, under 1 min, learns h2,1 > 50 to 97%

Cosine distance DC = 0.998, Matthews φ = 0.84.

consistency check ( testing full set): cool and re-assuring but not useful
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Hypersurfaces in WP4: Warmup II

What if the data is not complete? Very often the case when computation

powers are not yet capable (e.g., all triang for KS dataset: don’t even know

how many CY3 hypersurfaces in the 473 million toric varieties)

Standard method: take partial training and validation data, s.t., D = T t V

train NN with random 2000/7555 inputs (∼ 1/4 only)

use the trained NN to predict value for the remaining UNSEEN 7555 - 2000

Get ∼ 91.8% precision, dC = 0.91, φ = 0.84 in less than 20 sec on regular

laptop! Learning Curves

Another Question: How many have χ divisible by 3? (useful for #

generations after Wilson line)

2000 samples ∼ 1 min: 80% precision, dC = 0.91 when predicting 7555-2000

Endless possibilities of mathematical/physical queries. . .
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CICYs: a Colourful Example

An image = a matrix (pixels) with entries denoting shade/colour; NN really

good at images (e.g. hand-writing) [RMK: not using a convolutional NN here]

CICY is a (padded) 12× 15 matrix with 6 colours ; CICY is an image

(a) (b)
(a) typical CICY;

(b) average CICY

Input more sophisticated, so greater accuracy expected: e.g. in learning large

number of Kahler parametres h1,1 > 5:

learns 4000 samples (< 50%) in ∼ 5 min; validate against 7890-4000: 97%

accuracy, dC = 0.98, φ = 0.87.

Learning Curves
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CICYs: Detailed Analysis

Kieran Bull [Oxford] [Bull-YHH-Jejjala-Mishra: arXiv:1806.03121]

TensorFlow Python’s implementation of NNs and DL

Compare NNs with Decision Trees, Support Vector Machines, etc

0.2 0.4 0.6 0.8
Fraction of data used for training

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Hodge Number - Validation Learning Curves

SVM Classifier Validation Accuracy
Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy

Can one learn the

FULL information on

Hodge numbers?

h1,1 ∈ [0, 19] so can

set up 20-channel NN

classifer, regressor, as

well as SVM
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CICYs: Comparative Studies

h1,1 for NN, Regressor, SVM at 20 and 80% training Sky’s the Limit
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Remarks and Sanity Checks

Why does it work?

Short answer in the data-science community: nobody knows!!

Theorems still need to be proven about convergence, measure, etc., esp. for a

large number of neurons; even a few neurons has many parametres

At the most basic level: problems in algebraic geometry boil down to finding

kernels of integer matrices

NOT over-fitting training data ∩ validation data = {}

A Reprobate: Try to predict the next prime; has to fail, otherwise crazy

Train our NN: gets a miserable 0.1% accuracy even on learning, forget about

predicting, great! Better off just fitting n log(n) using PNT

expect other things like digits of π to utterly fail

YANG-HUI HE (London/Oxford/Tianjin) CY Landscape Institut Confucius 76 / 98



Summary and Outlook

PHYSICS The string landscape now solidly resides in the age of Big Data

Use Neural Networks as

1. Classifier deep-learn and categorize landscape data

2. Predictor estimate results beyond computational power

MATHS somehow bypassing the expensive steps of long

sequence-chasing, Gröbner bases, dual cones/combinatorics

and getting the right answer. how is AI doing maths more

efficiently without knowing any maths?

problems in geometry, combinatorics, etc, good; number

theory, not so good.
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many species of animals are capable of

extremely sophisticated tasks (e.g.,

chimps with herbal medicine); we are

such a species when confronted with

the landscape; we can (deep-)learn by

trial-error before we tackle the

fundamental question of why in the

future . . .

Try your favourite problem and see

Boris Zilber [Merton Professor of Logic,

Oxford]: “you’ve managed syntax

without semantics. . . ”

Sophia (Hanson Robotics, HK)

First non-human citizen (2017, Saudi Arabia)

First non-human with UN title (2017)
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Thank you

. . .

大哉大哉，宇宙之謎。美哉美哉，真理之源。

時空量化，智者無何。管測大塊，學也洋洋。

丘成桐先生： 時空頌

Infinite, infinite the secrets of the universe.

Inexhaustible, lovely in every detail.

Measure time, measure space no one can do it.

Watched through a straw what’s to be learned has no end.

Prof. Shing-Tung Yau, 2002
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Some Rudiments & Nomenclature

A sequence of specializations:

M Riemannian: positive-definite symmetric metric

M Complex Riemannian: have (p, q)-forms with p-holomorphic and

q-antiholomorphic indices: d = ∂ + ∂̄ (with ∂2 = ∂̄2 = {∂, ∂̄} = 0)

M Hermitian: complex Riemannian and can tranform gmn = gm̄n̄ = 0

M Kähler: Hermitian with Kähler form ω := igmn̄dz
m ∧ dzn̄ such that

dω = 0 (⇒ ∂mgnp̄ = ∂ngmp̄; gmn̄ = ∂∂̄K(z, z̄) for some scalar K)



Cohomology:

On Riemannian M : can define Laplacian on p-forms (Hodge star

?(dxµ1 ∧ . . . ∧ dxµp ) := εµ1...µn

(n−p)!
√
|g|

gµp+1νp+1
. . . gµnνndx

νp+1 ∧ . . . ∧ dxνn)

∆p = dd† + d†d = (d+ d†)2, d† := (−1)np+n+1 ? d?

Harmonic p-Form ∆pA
p = 0

1:1←→ Hp
deRham(X)

On Hermitian M : Dolbeault Cohomology Hp,q

∂̄
(X): cohomology on ∂̄

(similarly ∂) and ∆∂ := ∂∂† + ∂†∂ and similarly ∆∂̄

On Kähler M : ∆ = 2∆∂ = 2∆∂̄ , Hodge decomposition:

Hi(M) '
⊕
p+q=i

Hp,q(M)

Back to Calabi-Yau
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Covariant Constant Spinor

Define Jnm = iη†+γ
n
mη+ = −iη†−γnmη−, check: JnmJ

p
n = −δnm

(X6, J) is thus almost-complex

But η covariant constant ; ∇mJpn = 0 ; ∇Np
mn = 0

Nijenhuis tensor Np
mn := Jqm∂[qJ

p
n] − (m↔ n)

(X6, J) is thus complex (Jnm = iδnm, J
n̄
m̄ = iδn̄m̄, J

n
m̄ = J n̄m = 0 for some

local coordinates (z, z̄) ; transition functions holomorphic )

Define J = 1
2Jmndx

m ∧ dxn (Jmn := Jkmgkn) check:

dJ = (∂ + ∂̄)J = 0

(X6, J) is thus Kähler

summary X6 is a Kähler manifold of dimC = 3, with SU(3) holonomy

Back to Het



Famous CICYs

The Quintic Q = [4|5]1,101
−200 (or simply [5]);

Tian-Yau Manifold: TY =

 1 3 0

1 0 3

14,23

−18

no CICY has χ = ±6

TY has freely-acting Z3 ; (TY/Z3)6,9
−6;

central to early string pheno [Distler, Greene, Ross, et al.]

Schön Manifold: S =


1 1

3 0

0 3


19,19

0

has Z3 × Z3 freely acting symmetry

explored more recently;

The quotient is M0
3,3.

Back to CICYs



Reflexive Polytopes: Rudiments

Convex Lattice Polytope ∆ (use ∆n to emphasize dim n)

DEF1 (Vertex Rep): Convex hull of set S of k lattice points pi ∈ Zn ⊂ Rn

Conv(S) =

{
k∑
i=1

αipi|αi ≥ 0,
k∑
i=1

αi = 1

}
DEF2 (Half-Plane Rep): intersection of integer inequalities A · x ≥ b

{extremal pts = vertices, edges, 2-faces, 3-faces, . . . , (n-1)-faces = facets, ∆}

n = 2 polygons, n = 3 polyhedra, . . .

Polar Dual: ∆◦ = {v ∈ Rn | m · v ≥ −1 ∀m ∈ ∆}

Reflexive ∆: if ∆◦ is also convex lattice polytope

in general, vertices of ∆◦ are rational, not integer

duality: (∆◦)◦ = ∆

if further ∆ = ∆◦, self-dual/self-reflexive
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Reflexive Polytope: example

∆2

Vertices : (1, 0), (0, 1), (−1,−1)

Facets :


−x− y ≥ −1

2x− y ≥ −1

−x+ 2y ≥ −1

∆◦2

Vertices : (−1, 2), (−1,−1), (2,−1)

Facets :


−x− y ≥ −1

x ≥ −1

y ≥ −1

THM: Reflexive ⇔ single interior lattice point

(set to origin; all facets = hyperplanes of distance 1 away)
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Toric Variety from ∆n

Face Fan Σ(∆) ≡ {σ = pos(F )
∣∣F ∈ Faces(∆)} with

pos(F ) ≡
{∑

i λivi
∣∣vi ∈ F , λi ≥ 0

}
e.g. ∆2 = ⇒ Σ(∆2) =

Σ(∆n) then defines a compact Toric variety X(∆n) of dimC = n

X(∆) called Gorenstein Fano, i.e., −KX is Cartier and ample, i.e., O(−KX)

is line bundle and X is positive curvature

THM: X(∆) smooth ⇔ generators of every cone σ is part of Z-basis, i.e.,

det(gens(σ)) = ±1 Back to KS CY3
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Observatio Curiosa

Penn group purely abstract, but X19, 19
0 =

(
1 1

3 0

0 3

)
, Tian-Yau:

(
1 3 0

1 0 3

)
TRANSPOSES!!

Why should the best manifold from 80’s be so-simply related to the best

manifold from completely different data-set and construction 20 years later ??

Two manifolds are conifold transitions and vector bundles thereon transgress

to one another ([Candelas-de la Ossa-YHH-Szendroi, 2008])

Connectedness of the Heterotic Landscape

All CICY’s are related by conifold transitions

Reid Conjecture: All CY3 are connected

Proposal: All (stable) vector bundles on all CY3 transgress

Back to Compactifications
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A Computational Approach

Northeastern/Witts/Notre Dame/Cornell Collaboration: Programme to

study the computational algebraic geometry of M: joint with M. Stillman,

D. Grayson, H. Schenck (Macaulay 2), J. Hauenstein (Bertini), B. Nelson,

V. Jejjala

1 n-fields: start with polynomial ring C[φ1, . . . , φn]

2 D = set of k GIO’s: a ring map C[φ1, . . . , φn]
D−→ C[D1, . . . , Dk]

3 Now incorporate superpotential: F-flatness

〈fi=1,...,n = ∂W (φi)
∂φi

= 0〉 ' ideal of C[φ1, . . . , φk]

4 Moduli space = image of the ring map

C[φ1,...,φn]
{F=〈f1,...,fn〉}

D=GIO−→ C[D1, . . . , Dk], M' Im(D)

Image is an ideal of C[D1, . . . , Dk], i.e.,

M explicitly realised as an affine variety in Ck
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Abelian Quotient: M = C3/Γ

All abelian orbifolds are toric.

Archetypal example: C3/Z3 with action (1, 1, 1) ; U(1)3 quiver theory

>>
>

2

<<<

<<
<

3

1
W = εαβγX

(α)
12 X

(β)
23 X

(γ)
31 , X

(α)
12 , X

(β)
23 , X

(γ)
31 , α, β, γ = 1, 2, 3

Adjacency Matrix: A =


0 3 0

0 0 3

3 0 0



Incidence Matrix: d =


−1 −1 −1 0 0 0 1 1 1

1 1 1 −1 −1 −1 0 0 0

0 0 0 1 1 1 −1 −1 −1



loops: 33 = 27 GIOs; arrows: 3× 3 fields

Moduli space: 27 quadrics in C10, explicit equations for

C3/Z3 ' Tot(OP2(−3))

Back to Toric Quivers
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Notation for Affine Toric Variety Back to Toric Quivers

Def Example (Conifold)

Comb.:

Convex Cone σ ∈ Zd ;

Dual Cone σ∨ ; X =

SpecMaxC[Sσ = x
gen(σ∨)∩Zd
i ]

Toric Diagram = Sσ

Cone (1,0,1)

(0,0,1) (1,1,1)

(0,1,1)

(−1,0,1)
(0,−1,1)

(1,0,0)

(0,1,0)

Dual

Sσ = 〈a = z, c = yz, b = xyz, d = xz〉

ab = cd in C4[a, b, c, d]

Symp:

Generalise Pn:

a (C∗)q−d action on Cq[xi]
xi 7→ λ

Qa=1...q−d
i=1...q

a xi with

Relations:
d∑
i=1

Qai vi = 0

Toric Diagram = vi

(1,1,1)(0,0,1)

(1,0,1) (0,1,1)

Q = [−1,−1, 1, 1]

C∗ on C4 ;

kerQ = Gt =
1 0 0 1

1 0 1 0

1 1 1 1



Comp: Binomial Ideal 〈
∏
pi =

∏
qj〉 ab = cd in C4
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Tropical Geomtry: Amoebae & Algae

Amoeba Projection Log(z, w)→ (log |z|, log |w|)

A = Amoeba(P (z, w) ⊂ (C∗)2) = Log(P ) ⊂ R2 ;

skeleton of A is the (p, q)-configuration

T 2 of dimer model lives in the T 3 of mirror symmetry

P (z, w) = 0 describes fiber Σ over s = 0 in mirror CY3

(
⋂

3-cycles)∩Σ at a graph Γ on T 2 ⊂ T 3 ; periodic tiling

Alga Projection: Arg(z, w)→ (arg(z), arg(w))

Alga(P (z, w) ⊂ (C∗)2) = Arg(P ) ⊂ [0, 2π)2
;

fundamental region of dimer

Back to Toric Quivers
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Toric/Quiver/Seiberg Duality: Plethora of Examples

Model II

6,10

5,9

2,41,3

7,8,11,12

A B

D C

X

X

YY
i11

i12

i21

i22

A B

C D

4

5

1 2
3

4

5

2
3

1

F0

Model I Model II

dP2

Model I

Model II

1

5

4

3

6

2

2

3

51

4

6

Model III
Model IV

4

5

1

2

6

3

1

62

3 5

4

Model I

dP3
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Perspectives on Seiberg Duality

Mirror Picture Fuk(Y ) (Type IIA)

D6-branes wrapping SL-k + 3 cycles Si in the mirror Y

Quiver = intersection matrix Aij = Si ◦ Sj

Picard-Lefschetz Si → Si − (Si ◦ Si0)Si0

Derived Category D[(X) (Type IIB)

think of brane as support for coherent sheaf w/ ch(Fi) := (rk, c1, c2)

Quiver: Aij = χ(Fi, Fj) :=
∑
m

(−1)m dimC Extm(Fi, Fj)

mutation of exceptional collection of Fi

Cluster Algebra

cluster mutation rules on cluster (matrix) variables

Gadde-Gukov-Putrov, Franco-Lee-Seong-Vafa, other dim.

relation to total positivity and Grassmannian? (cf. Arkani-Hamed, Cachazo,

Bourjaily, Trnka et al.; Franco (BFT)) Back to Tilings
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Learning Curve: WP4
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Learning Curve: CICY
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KS Dataset: Gradus ad Parnasum

4319 reflexive ∆3 correspond to compact K3 surfaces or non-compact CY3

Each is an integer matrix (padded) 3× 39 with entries in [0, 28], pixelate

with 28 shades of colour

(a)

(b)

(a) typical ∆3;

(b) average ∆3

Data size not so big for n = 3; training against for example, Sasaki-Einstein

Volume or Picard Number achieves ∼ 60% accuracy in a few minutes

GOAL: to learn from geometrical quantities in a subset of ∼ 105−6

(currently within computer power) to predict the full ∼ 1010 ∆4 (currently

beyond computer power) (to do . . . )
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Toric Quiver Gauge Theories

Infinite number of theories: any convex lattice polygon ; non-compact CY3

which D3-brane can probe; 2 databases so far:

Davey-Hanany-Pasukonis, 2009 (by terms in superpotential);

updated and expanded Chuang-Franco-YHH-Xiao, 2017 (by area of polygon)

computationally hard: finding dual cone exponential-running; even with

dimer/brane-tiling technology, Higgsing/perfect-matchings time-consuming

Try on dataset1, (small) size = 375

INPUT: combined integer matrix QDF : incidence matrix from D-terms;

exponent matrix from F-terms

OUTPUT: e.g., # gauge groups (train 100, predicts to ∼ 97%) Learning Curves

TO DO: use this to predict unknown gauge theory given big toric diagrams

Back to CICYs
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Learning Curves

Picard Numbers of

K3 hyperfaces in

toric Fano 3-folds

from reflexive ∆3
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h1,1 of CICYs:Out[25]=
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Return


