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Parreau–Widom sets

Let E ⊂ R be a compact set of positive logarithmic capacity and
denote by g the Green’s function for Ω = C ∖ E with pole at ∞.

Assume that each point of E is a regular point for Ω and let dµE
be the equilibrium measure of E.

Recall that

g(x) = ∫ log ∣t − x ∣dµE(t) − log(Cap(E))
and write

E = [α,β]∖⋃j (αj , βj).

While g vanishes on E, it is concave on (αj , βj) for each j . So
there is precisely one critical point cj per gap.
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g(x) = ∫ log ∣t − x ∣dµE(t) − log(Cap(E))
and write

E = [α,β] ∖ ⋃j (αj , βj).

While g vanishes on E, it is concave on (αj , βj) for each j . So
there is precisely one critical point cj per gap.

Defn. We call E a Parreau–Widom set if ∑j g(cj) < ∞.
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Comb-like domains

↷
E
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Comb-like domains

↷
E

dµE is absolutely continuous iff

supj{
g(cj)
∣vj−v ∣} < ∞ for a.e. v ∈ (0, π).

This is always the case when ∑j g(cj) < ∞ (i.e., E is PW).
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Homogeneous sets

Any finite gap set is PW, but the notion goes way beyond.

It includes all compact sets E that are homogeneous in the sense
of Carleson. By definition, this means there is an ε > 0 so that

∣(t − δ, t + δ) ∩ E∣
δ

≥ ε for all t ∈ E and all δ < diam(E).

This geometric condition was introduced to avoid cases where
certain parts of E are very thin compared to Lebesgue measure.

Example

Remove the middle 1/4 from [0,1] and continue removing subintervals
of length 1/4n from the middle of each of the 2n−1 remaining intervals.
Let E be the set of what is left in [0,1] — a fat Cantor set of ∣E∣ = 1/2.
One can show that ∣(t − δ, t + δ) ∩ E∣ ≥ δ/4 for all t ∈ E and all δ < 1.
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Gábor Szegő Centenary
Paul Nevai

682 NOTICES OF THE AMS VOLUME 42, NUMBER 6

Gábor Szegő was born one hundred years ago
on January 20, 1895, in Kunhegyes, Hungary
(and died on August 7, 1985, in Palo Alto, Cali-
fornia).

To the mathematics community, Szegő is best
known for his masterpiece Aufgaben und
Lehrsätze aus der Analysis, vols. I and II (written

with his mentor and friend,
George (György) Pólya,
Springer-Verlag, Berlin, 1924),
which was used by genera-
tions of mathematics students
(and their professors). Quot-
ing Pólya: “It was a wonderful
time; we worked with enthu-
siasm and concentration. We
had similar backgrounds. We
were both influenced, like all
other young Hungarian math-
ematicians of that time, by
Leopold (Lipót) Fejér. We were
both readers of the same well-
directed Hungarian Math-
ematical Journal for high
school students that stressed
problem solving. We were in-
terested in the same kind of
questions, in the same topics;
but one of us knew more
about one topic, and the other
more about some other topic.

It was a fine collaboration. The book Aufgaben
und Lehrsätze aus der Analysis, the result of our
cooperation, is my best work and also the best
work of Gábor Szegő.”

For analysts, Szegő is best known for Szegő’s
extremal problem and his results on Töplitz ma-
trices which led to the concept of the Szegő re-
producing kernel and which were the starting
point for the Szegő limit theorem and the strong
Szegő limit theorem and for Szegő’s theory of
Szegő’s orthogonal polynomials on the unit cir-
cle. These have been summarized in his books
Orthogonal Polynomials (Colloquium Publica-
tions, vol. 23, American Mathematical Society,

Providence, Rhode Island, 1939) and Toeplitz
Forms and their applications (jointly with Ulf
Grenander, University of California Press, Berke-
ley and Los Angeles, 1958). The former is one
of the most successful books ever published by
the American Mathematical Society (four edi-
tions and several reprints).

Several of his friends, collaborators, and stu-
dents have corresponded on a plan for a memo-
rial (most likely a bronze relief to be set up in
Kunhegyes in front of the city library) dedicated
to Gábor Szegő.

Kunhegyes is a small town situated approxi-
mately 150 km southeast of Budapest. Szegő was
one of the (two or three) most prominent peo-
ple born there, so it is very appropriate to have
a memorial placed there, especially since the
citizens of Kunhegyes are committed to main-
tain such a memorial for many years to come.
One might justifiably argue that either Budapest
or Stanford would also be a proper place for such
a memorial. As a matter of fact, there is a dis-
cussion going on about placing copies of the
Szegő memorial in either Budapest or Stanford
or both.

It is expected that such a memorial will cost
in the neighborhood of three to five thousand
U.S. dollars. For information on how to partic-
ipate in this project, please contact either Paul
Nevai, Department of Mathematics, Ohio State
University, Columbus, OH 43210-1174, USA. (e-
mail: nevai@math.ohio-state.edu, telephone:
614-292-3317) or perhaps the other sponsors of
this project: namely, Dick Askey, Paul Erdős,
Samuel Karlin, Peter Lax, Lee Lorch, Gilbert
Strang, and Harold Widom, or one of the children
of Gábor Szegő.

Finally, additional information can be found
on Szegő  at http://www.math.ohio-
state.edu/JAT/DATA/ATNET/szego.

Paul Nevai is professor of mathematics at Ohio State
University, Columbus, OH. His e-mail address is
nevai@math.ohio-state.edu.

...on
sabbatical
in Europe,

1956

szego.qxp  8/13/98 11:41 AM  Page 2

Gábor Szegő
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Szegő’s theorem on PW sets

Let E ⊂ R be a Parreau–Widom set and let J = {an,bn}∞n=1 be a
Jacobi matrix with spectral measure dρ = f (t)dt + dρs.

Assume that σess(J) = E and denote by {xk} the eigenvalues of
J outside E, if any. [Adv. Math. 2012]

On condition that ∑k g(xk) < ∞, we have

∫
E

log f (t)dµE(t) > −∞ ⇔ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0.

In the affirmative,

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

– What can be said about bn and can we say more about an?

12 / 29▲



Szegő’s theorem on PW sets

Let E ⊂ R be a Parreau–Widom set and let J = {an,bn}∞n=1 be a
Jacobi matrix with spectral measure dρ = f (t)dt + dρs.

Assume that σess(J) = E and denote by {xk} the eigenvalues of
J outside E, if any. [Adv. Math. 2012]

On condition that ∑k g(xk) < ∞, we have

∫
E

log f (t)dµE(t) > −∞ ⇔ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0.

In the affirmative,

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

– What can be said about bn and can we say more about an?

12 / 29▲



Szegő’s theorem on PW sets

Let E ⊂ R be a Parreau–Widom set and let J = {an,bn}∞n=1 be a
Jacobi matrix with spectral measure dρ = f (t)dt + dρs.

Assume that σess(J) = E and denote by {xk} the eigenvalues of
J outside E, if any. [Adv. Math. 2012]

On condition that ∑k g(xk) < ∞, we have

∫
E

log f (t)dµE(t) > −∞ ⇔ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0.

In the affirmative,

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

– What can be said about bn and can we say more about an?

12 / 29▲



The Szegő class

Inspired by Szegő’s theorem, we introduce the class Sz(E).

Defn. A Jacobi matrix with spectral measure dρ = f (t)dt + dρs
is said to belong to the Szegő class for E if

the essential support of dρ is equal to E,

the absolutely continuous part of dρ obeys the Szegő condition

∫
E

log f (t)dµE(t) > −∞,

the isolated mass points xk of dρ outside E satisfy the condition

∑k g(xk) < ∞.

– Do we have power asymptotics of the orthogonal polynomials ?
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Reflectionless operators
Given a PW set E, we denote by TE the set of all two-sided Jacobi
matrices J ′ = {a′n,b′n}∞n=−∞ that have spectrum equal to E and are
reflectionless on E, that is,

Re⟨δn, (J ′ − (t + i0))−1δn⟩ = 0 for a.e. t ∈ E and all n.

J′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋱ ∣
⋱ b′n−1 a′n−1 ∣

a′n−1 b′n ∣ a′n−−− −−− −−− − −−− −−− −−−
a′n ∣ b′n+1 a′n+1

∣ a′n+1 b′n+2 ⋱
∣ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

Equivalently,

(a′n)2m+
n(t + i0) = 1

m−
n(t + i0)

for a.e. t ∈ E and all n,

where m+
n is the m-function for J+n = {a′n+k ,b

′
n+k}

∞
k=1 and m−

n the
m-function for J−n = {a′n−k ,b

′
n+1−k}

∞
k=1.
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Remling’s theorem

By compactness, any bounded J = {an,bn}∞n=1 has accumulation
points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.

Let E ⊂ R be a compact set and assume that ∣E∣ > 0.

If σess(J) = E and the spectral measure dρ = f (t)dt + dρs of J
obeys

f (t) > 0 for a.e. x ∈ E,

then any right limit of J belongs to TE. [Ann. of Math. 2011]

The theorem says that the left-shifts of J approach TE as a set.

Hence, TE is the natural limiting object associated with E.
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The collection of divisors

Recall that
E = [α,β]∖⋃j (αj , βj).

As described below, there is a natural way to introduce a torus of
dimension equal to the number of gaps in E.

The set DE of divisors consists of all formal sums

D = ∑j(yj ,±), yj ∈ [αj , βj],

where (yj ,+) and (yj ,−) are identified when yj is equal to αj or βj .

un i v e r s i ty of cop enhagen de partment of mathemat i cal s c i e n c e s

α αj βj αk βk β

Slide 0 — February 4, 2012

We shall equip DE with the product topology.
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A map TE → DE

When J ′ ∈ TE, we know that G(x) = ⟨δ0, (J ′ − x)−1δ0⟩ is analytic on
C ∖ E and has purely imaginary boundary values a.e. on E.

Such Nevanlinna–Pick functions admit a representation of the form

G(x) = −1√
(x − α)(x − β)

∏
j

x − yj√
(x − αj)(x − βj)

,

where yj ∈ [αj , βj] for each j .

Using the relation

(a′0)2m+(x) − 1/m−(x) = −1/G(x),

it follows that every yj ∈ (αj , βj) is a pole of either m+ or 1/m−.

As m+ and 1/m− have no common poles, this in turn allows us to
define a map TE → DE.
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Fuchsian groups & charaters

The universal covering map x ∶ D→Ω (= C ∖ E) is onto but only
locally one-to-one.

Associated with x is a Fuchsian group ΓE of Möbius transforma-
tions on D such that

x(z) = x(w) ⇐⇒ ∃γ ∈ ΓE ∶ z = γ(w).

ΓE is isomorphic to the fundamental group π1(Ω) and hence a free
group on as many generators as the number of gaps in E.

We denote by Γ ∗
E

the multiplicative group of unimodular characters
on ΓE and equip it with the topology dual to the discrete one.

Since an element in Γ ∗
E

is determined by its values on the genera-
tors of ΓE, we can think of Γ ∗

E
as a compact torus (which is infinite

dimensional when Ω is infinitely connected).
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The Abel map

The Abel map DE → Γ ∗
E
, usually defined via Abelian integrals, is

well-defined and continuous when E is a PW set.

A key result of Sodin–Yuditskii states that the maps

TE Ð→ DE Ð→ Γ ∗
E

are homeomorphisms when the direct Cauchy theorem holds.[2]In
fact, the Abel map is bijective if and only if DCT holds.

Here, the topology on TE is induced by operator norm and every
point in TE has almost periodic Jacobi parameters.

There exist PW sets for which DCT fails, but PW with DCT is still
more general than homogeneous.

From our point of view, the map TE → Γ ∗
E

is given by the character
of the Jost function of J (to be defined shortly).
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blaschke products
To every w ∈ D, we associated the blaschke product

B(z ,w) = ∏
γ∈ΓE

∣γ(w)∣
γ(w)

γ(w) − z

1 − γ(w)z
.

Not only is B(⋅,w) analytic on D with simple zeros at {γ(w)}γ∈ΓE ,
it is also character automorphic.

This means there is a character χw in Γ ∗
E

such that

B(γ(z),w) = χw (γ)B(z ,w).

In particular, the character of B(z) ∶= B(z ,0) is given by

χ0(γj) = exp{2πi ⋅ µE([βj , β])}

for a suitable choice {γj} of generators of ΓE.

We mention in passing that g(x(z)) = − log ∣B(z)∣.
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The direct Cauchy theorem
As before, let {cj} denote the critical points of g (the Green’s
function for Ω with pole at ∞).

Pick wj ∈ D such that x(wj) = cj and form the blaschke product

c(z) = ∏j B(z ,wj).

When E is a PW set, this product converges to a character auto-
morphic function on D with character χc .

Definition

The direct Cauchy theorem (DCT) is said to hold if

∫
2π

0

ϕ(e iθ)
c(e iθ)

dθ
2π

= ϕ(0)
c(0)

whenever ϕ ∈ H1(D) is character automorphic and χϕ = χc .
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Szegő asymptotics
Let E ⊂ R be a Parreau–Widom set and assume that the direct
Cauchy theorem holds.

Suppose that J = {an,bn}∞n=1 belongs to the Szegő class for E.

Then there is a unique J ′ = {a′n,b′n}∞n=−∞ in TE such that

∣an − a′n∣ + ∣bn − b′n∣ → 0.

Consequently, an and bn are asymptotically almost periodic.

Moreover, if dµ′ is the spectral measure of J ′ restricted to `2(N),
then

Pn(x ,dµ) /Pn(x ,dµ′)
has a limit for all x ∈ C ∖R.

Hence, ∏(an/a′n) and ∑(bn − b′n) converge conditionally.
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The Jost function

Let us introduce the key player for polynomial asymptotics.

Definition

Given J ∈ Sz(E), we define the Jost function by

u(z ; J) = ∏k B(z ,pk) exp{−1
2 ∫

2π

0

e iθ
+ z

e iθ
− z

log f (x(e iθ))dθ

2π
} ,

where the pk ’s are chosen in such a way that x(pk) = xk , the
eigenvalues of J in R ∖ E.

The Jost function is analytic on D and one can show that it is also
character automorphic, that is,

∃χ ∈ Γ ∗
E
∶ u(γ(z); J) = χ(γ)u(z ; J) for all γ ∈ ΓE.

As for notation, we denote by χ(J) the character of J.
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Elements of the proof

The proof of the first part relies on three important results:

1 the Denisov–Rakhmanov–Remling theorem

— any right limit of J belongs to TE

2 the Jost isomorphism of Sodin and Yuditskii

— the map TE ∋ J ′ z→ χ(J ′) ∈ Γ ∗

E
is a homeomorphism

3 the Jost asymptotics for right limits

— if Jml

str .ÐÐ→ J ′ ∈ TE, then χ(J ∣ml
) → χ(J ′)
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Proof, first part

Let J ′ be the unique element in TE for which χ(J ′) = χ(J).

For contradiction, suppose that

∣an − a′n∣ + ∣bn − b′n∣ /Ð→ 0.

Then there is a subsequence {ml} so that J and J ′ have different
right limits, say K ≠ K ′.

According to Remling’s theorem, both K and K ′ lie in TE.

Moreover, by Jost asymptotics for right limits, we have

χ(J ∣ml ) Ð→ χ(K) and χ(J ′ml
) Ð→ χ(K ′).

Since χ(J) = χ(J ′), we also have χ(J ∣m) = χ(J ′m) for each m.

So χ(K) = χ(K ′) and hence K = K ′ by the Jost isomorphism.
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Proof, second part

The Jost solution defined by un(z ; J) = a−1n B(z)nu(z ; J ∣n) satis-
fies the same three-term recurrence relation as Pn−1.

So we can write the diagonal Green’s function as

Gnn(x(z),dµ) = Pn−1(x(z),dµ)un(z ; J)/Wr(z),

where Wr(z) is the Wronskian which is equal to −u(z ; J).
Now,

Pn−1(x(z),dµ)
Pn−1(x(z),dµ′)

= Gnn(x(z),dµ)
Gnn(x(z),dµ′)

un(z ; J ′)
un(z ; J)

u(z ; J)
u(z ; J ′)

.

By use of the resolvent formula and since Jn − J ′n → 0, the ratio
of Gnn’s converges to 1. As J and J ′ have the same right limits,
the ratio of un’s also converges to 1.
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Polynomial asymptotics
The proof shows that

Pn(x(z),dµ)
Pn(x(z),dµ′)

Ð→ u(z ; J)
u(z ; J ′)

locally uniformly on Fint, a fundamental domain for ΓE.

The orthonormal polynomials associated with points in TE behave
like

a′nB(z)nPn(x(z),dµ′) ∼ u(z ;dµ′)u(z ;dµ′,r−n−1),
where J ′,r is the matrix given by

a′,rn = a′−n−1, b
′,r
n = b′−n for n ∈ Z.

In conclusion, we have

anB(z)nPn(x(z),dµ) ∼ u(z ;dµ)u(z ;dµ′,r−n−1).
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Open problems
Let E ⊂ R be a Parreau–Widom set and assume that the direct
Cauchy theorem holds.

Suppose J ′ = {a′n,b′n}∞n=−∞ is a matrix in TE and J = {an,bn}∞n=1 is
an arbitrary Jacobi matrix.

Conjecture: If ∑ ∣an − a′n∣ + ∣bn − b′n∣ < ∞, then J belongs to the
Szegő class for E.

Conjecture: If J lies in the Szegő class for E and χ(J) = χ(J ′),
then ∑(an − a′n)2 + (bn − b′n)2 < ∞.

Open question: If ∑(an − a′n)2 + (bn − b′n)2 < ∞ for some J ′, what
can we say about J ?

Open question: Is it possible to characterize all `2-perturbations of
TE through their spectral measures ?
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Thank you very much for your
attention!
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