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denote by g the Green's function for 2 = C \ E with pole at co.

Assume that each point of E is a regular point for 2 and let dug
be the equilibrium measure of E.

Recall that
g(x) = [ log|t - x| dux(t) - log(Cap(E))

E= [Oé,ﬁ] N Uj (aj)ﬂj)

While g vanishes on E, it is concave on (aj, 3;) for each j. So
there is precisely one critical point ¢; per gap.

and write

Defn. We call E a Parreau-Widom set if . g(c;j) < oco.
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It includes all compact sets E that are homogeneous in the sense
of Carleson. By definition, this means there is an € > 0 so that
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This geometric condition was introduced to avoid cases where
certain parts of E are very thin compared to Lebesgue measure.




Any finite gap set is , but the notion goes way beyond.

It includes all compact sets E that are homogeneous in the sense

of Carleson. By definition, this means there is an € > 0 so that

|(t-6,t+d)nE
)

This geometric condition was introduced to avoid cases where
certain parts of E are very thin compared to Lebesgue measure.

>e for all t € E and all § < diam(E).

Example

Remove the middle 1/4 from [0, 1] and continue removing subintervals
of length 1/4™ from the middle of each of the 27! remaining intervals.

Let E be the set of what is left in [0,1] — a fat Cantor set of |E| = 1/2.
One can show that |(t - d,t+d) NE|>6/4 for all t € E and all § < 1.
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Jacobi matrix with spectral measure dp = f(t)dt + dps.




Szegd’s theorem on PW sets

Let Ec R be a Parreau-Widom set and let J = {a,, b,};2; be a
Jacobi matrix with spectral measure dp = f(t)dt + dps.
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J outside E, if any. [adv. Math. 2012]
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The Szegé class

Inspired by Szegd's theorem, we introduce the class Sz(E).
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Reflectionless operators

matrices a5, 0§ =00
reflectionless on E, that is,

Re( ( —(t+ /0)) ): 0 for a.e. te E and all n.

that have spectrum equal to

[
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y a,_, b, | a,
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Equivalently, | ’
+ 1
(al)2m’ (t +i0) = — for a.e. t € E and all n,
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locally one-to-one.

Associated with x is a Fuchsian group I't of Mdbius transforma-
tions on I such that

x(z) =x(w) <= Fyelg:z=7y(w).

I'g is isomorphic to the fundamental group 71(§2) and hence a free
group on as many generators as the number of gaps in E.

We denote by I'f" the multiplicative group of unimodular characters
on Ik and equip it with the topology dual to the discrete one.

Since an element in I is determined by its values on the genera-
: N e




The Abel map

well-defined and continuous when E is a PW set.




The Abel map

well-defined and continuous when E is a PW set.

A key result of Sodin—Yuditskii states that the maps
7]5 — D — F]g*

are homeomorphisms when the direct Cauchy theorem holds.!




The Abel map

well-defined and continuous when E is a PW set.
A key result of Sodin—Yuditskii states that the maps
7]5 — D — F]g*

are homeomorphisms when the direct Cauchy theorem holds.!

Here, the topology on T is induced by operator norm and every
point in Tg has almost periodic Jacobi parameters.




—gla\

f

The Abel map

well-defined and continuous when E is a PW set.

A key result of Sodin—Yuditskii states that the maps
7]5 — D — F]g*
are homeomorphisms when the direct Cauchy theorem holds.!

Here, the topology on T is induced by operator norm and every
point in Tg has almost periodic Jacobi parameters.

There exist PW sets for which DCT fails, but PW with DCT is still
more general than homogeneous.




: _g‘a\  “

f

The Abel map

well-defined and continuous when E is a PW set.

A key result of Sodin—Yuditskii states that the maps
7]5 — D — F]g*
are homeomorphisms when the direct Cauchy theorem holds.!

Here, the topology on T is induced by operator norm and every
point in Tg has almost periodic Jacobi parameters.

There exist PW sets for which DCT fails, but PW with DCT is still
more general than homogeneous.

From our point of view, the map 7¢ - I'¢ is given by the character
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function for 2 with pole at o).

Pick w; € D such that x(w;) = ¢; and form the blaschke product
c(z) = HJ. B(z,w;).

When E is a PW set, this product converges to a character auto-

morphic function on D with character x..

Definition

The direct Cauchy theorem (DCT) is said to hold if

2r o(e®) df _ p(0)
fo c(e®) 2~ ¢(0)

whenever ¢ € H'(DD) is character automorphic and y,, = x..
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Szegd asymptotics

Cauchy theorem holds.

Suppose that J = {a,, by} 52, belongs to the Szegé class for E.
Then there is a unique J' = {a),, b}, } % _. in T such that

lan — al,| + |bn = b},| = 0.
Consequently, a, and b, are asymptotically almost periodic.
Moreover, if dy’ is the spectral measure of J restricted to £2(N),
then Pa(x,dix) | Pa(x, i)
has a limit for all x e C\ R.

Hence, [1(an/a),) and Y. (b, — b;,) converge conditionally.




The Jost function




The Jost function

Let us introduce the key player for polynomial asymptotics

Definition
Given J € Sz(E), we define the Jost function by
1 (27 i
u(z;J) = HkB(z,pk)exp{—E/(; : +z|ogf(x(e9)) }

where the py's are chosen in such a way that x(px) = xx, the

eigenvalues of J in R\ E.




The Jost function

Let us introduce the key player for polynomial asymptotics

Definition
Given J € Sz(E), we define the Jost function by
1 [ ;
u(z;J) = HkB(zapk)eXp{_EA‘ : +z|ogf(x(e9)) }

where the py's are chosen in such a way that x(px) = xx, the

eigenvalues of J in R\ E.
The Jost function is analytic on D and one can show that it is also

character automorphic, that is,
Ix e I§ : u(v(2);J) = x(y) u(z;J) forall veI%.
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Elements of the proof

The proof of the first part relies on three important results:

@ the Denisov—Rakhmanov—-Remling theorem

— any right limit of J belongs to T

@ the Jost isomorphism of Sodin and Yuditskii

— the map Tg 3 J' — x(J') e I is a homeomorphism

© the Jost asymptotics for right limits

— iy > J € Tz, then x(J|m,) — x(J")
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Proof, first part

Let J' be the unique element in Tg for which x(J) = x(J).

For contradiction, suppose that
lan — al,| + |bn — bl,| - 0.

Then there is a subsequence {m,} so that J and J" have different
right limits, say K # K.

According to Remling's theorem, both K and K’ lie in Tg.

Moreover, by Jost asymptotics for right limits, we have
X(Jlm)) — x(K) and x(Jp,) — x(K").

Since x(J) = x(J"), we also have x(J|m) = x(J},) for each m.

. So x(K) = x(K") and hence K = K’ by the Jost isomorphism. !
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Proof, second part

The Jost solution defined by u,(z;J) = a,*B(z)"u(z; J|,) satis-
fies the same three-term recurrence relation as P,_1.

So we can write the diagonal Green's function as
Gnn(X(2), dp) = Pno1(x(2), dp)un(z; J)/ Wr(2),

where Wr(z) is the Wronskian which is equal to —u(z; J).
Now,
Pn-1(x(2),dp) _ Gpn(x(2),dp) un(z;J') u(z;J)
Poo1(x(2),di’)  Gan(x(2),dp') un(z;J) u(z; J')’
By use of the resolvent formula and since J, — J/, — 0, the ratio
of Gn,'s converges to 1. As J and J' have the same right limits,

. the ratio of u,’'s also converges to 1. !
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In conclusion, we have
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Thank you very much for your
attention!
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