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HOW TO GENERATE RANDOM POINTS?



Random Matrices?



ENSEMBLES OF RANDOM MATRICES



ENSEMBLES OF RANDOM MATRICES



GAUSSIAN UNITARY ENSEMBLE



UNITARY ENSEMBLES OF RANDOM MATRICES



This probability measure on matrices induces a joint probability

density on their eigenvalues �1 < · · · < �N :
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Built-in repulsion

UNITARY ENSEMBLES OF RANDOM MATRICES



This probability measure on matrices induces a joint probability

density on their eigenvalues �1 < · · · < �N :
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UNITARY ENSEMBLES OF RANDOM MATRICES

The free energy of this matrix model is FN = � 1

N2
lnZN

FN ⇠ F1 = ? as N ! 1
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UNITARY ENSEMBLES OF RANDOM MATRICES

Heuristics: ZN = he�2E(�1,...,�N i

E(�1, . . . ,�N ) =
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For large N , the expected distribution of �j ’s minimizes E.

This minimizer is the equilibrium measure in an external field

given by V .



What about 
Orthogonal 
Polynomials?



CONNECTIONS WITH O. P.
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Vandermonde

CONNECTIONS WITH O. P.



Vandermonde

CONNECTIONS WITH O. P.



CONNECTIONS WITH O. P.

Z
. . .

Z
det [KN (�j ,�k)1j,kN ] d�d+1 . . . d�N

= (N � d)! det [KN (�j ,�k)1j,kd]

Consequence: the partition function

bZN and all statistics of the

eigenvalue distribution can be expressed in terms of the CD kernel

KN .



CONNECTIONS WITH O. P.

The semicircle
law

-2 -1 1 2

0.5

1.0

1.5

2.0



CONNECTIONS WITH O. P.

a.k.a. the equilibrium
measure in the external

field x2/2
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CONNECTIONS WITH O. P.

Sine kernel
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CONNECTIONS WITH O. P.
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CONNECTIONS WITH O. P.

Universality!

!



Also Multiple 
Orthogonal 
Polynomials?



CONNECTIONS WITH M.O. P.



RANDOM MATRICES WITH EXTERNAL SOURCE

I’m a multiple OP (of Type II)

PN (M) dM =
1

ZN
e�Tr(V (M))�AMdM,



Let’s talk about 
random paths
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Planar network (�,!) = acyclic directed (!) planar graph � with

scalar weights ! assigned to its edges.

Weight of a directed path from i to j =

Q
weights of its edges.

Weight matrix = n⇥ n matrix (aij), with aij =
P

weights of all

paths i ! j.

Weight of a collection of directed paths =

Q
of their weights.

Example: minor (2, 3)⇥ (2, 3) is equal to bcdegh+ bdfh+ fe.

PLANAR NETWORKS



NON-INTERSECTING RANDOM PATHS

Example: Brownian motion



NON-INTERSECTING RANDOM PATHS
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NON-INTERSECTING RANDOM PATHS
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A determinantal process!



NON-INTERSECTING RANDOM PATHS
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NON-INTERSECTING RANDOM PATHS
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NON-INTERSECTING RANDOM PATHS



NON-INTERSECTING RANDOM PATHS



NON-INTERSECTING RANDOM PATHS



NON-INTERSECTING RANDOM PATHS



That was a dirty trick to 
create  Multiple 

Orthogonal Polynomials! 
Can they appear naturally?



SQUARED BESSEL PROCESS IN D=3 (BESQ3)

A Brownian motion each 
coordinate



SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)



SQUARED BESSEL PROCESS IN D=3 (BESQ3)



SQUARED BESSEL PROCESS IN D=3 (BESQ3)



SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)
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SQUARED BESSEL PROCESS IN D=3 (BESQ3)



A method behind these 
neat results?



RIEMANN-HILBERT METHOD



RIEMANN-HILBERT METHOD
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THE R-H STEEPEST DESCENT ANALYSIS



THE R-H STEEPEST DESCENT ANALYSIS



RIEMANN-HILBERT METHOD



RIEMANN-HILBERT METHOD



RIEMANN-HILBERT METHOD

But this is another story…



TO BE CONTINUED…


