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HOW 1O GENERATE RANDOM POINTS?

Imagine we want to distribute on the real line several charges, assuming that
their positions are random. This is the picture we get if we generate independent
instances of random numbers:

But this picture does not reflect mutual repulsion. How can we built in this
repulsion into the random picture?

That is what occupied Eugene Wigner in 1951, when he was looking for a model
for the Hamiltonian of a heavy nucleus.

He was looking for something like this:

These are eigenvalues of a Hermitian random matrix.



i Random Matrices? §

.



-NSEMBLES OF RANDOM MATRICES

Random matrix theory =~ branch of random spectral theory.

One of the main problems: asymptotics (N — oo) of various
spectral characteristics of NV x N matrices, whose probability dis-
tribution is given in terms of matrix elements.

Eigenvalues: @ AN
Eigenvece], el

Goal: “transter” the probabilistic information from matrix elements to eigen-
values and eigenvectors.

M
Moy

M1

Similarity with the spectral theory of Schrodinger operators with random po-
tential.



-NSEMBLES OF RANDOM MATRICES

We are typically given:

e A class of N x N matrices My (e.g., Hermitian, Unitary, etc.).
e A probability measure Py on M.

The pair (My, Py) is a random matrix ensemble.

e A function ® : My — R or C (typically, orthogonal or unitary
invariant).

We often need to calculate or estimate (as N — oo) values of
integrals of the form

/ O(Mpy)P(dMy)
MN



GAUSSIAN UNITARY ENSEMB

First example:

My = {N x N Hermitian matrices}

Py Gaussian:
1

Pn(dM) = — exp (- Tr (M?)) dM
4N
where A A
j=1 j#h
(analogue of the Lebesgue measure on My ).

This is the Gaussian Unitary Ensemble (GUE).

We can consider more general probability distributions Py, by
taking an arbitrary function (typically, a polynomial V'), with

Py (dM) = ZL exp (—Tr V(M) dM



UNITARY ENSEMBLES OF RANDOM MATRIC

My = {N x N Hermitian matrices}

Py (dM) = ZL exp (—Tr V(M) dM

N N
where dM = Hdej HdRe(Mjk)dIm(Mj )

j=1 j#k
According to the spectral theorem,

I == = cliem{ o )
(M117 R .,MNN,ReMlg,Ilig, S0 ) —> ()\1, Fasd .,)\N,uij)

is a change of variables.

Weyl integration formula gives us its jacobian. According to it,
dM = cn | [(Aj = Xo)%dA:1 .. dAndU
]
dU is the Haar measure on the unitary group U(n).




UNITARY ENSEMBLES OF RANDOM MATRIC

My = {N x N Hermitian matrices}

Py (dM) = ZL exp (—Tr V(M) dM

N N
where dM = Hdej HdRe(Mjk)dIm(Mj )

j=1 j#k
This probability measure on matrices induces a joint probability

density on their eigenvalues Ay < --- < Ap:

N
1
E H()\z g )\j)Q 29 ( Z V()\z’)) ;
1=1

R

N :// H()\i—)\j)2ex
R i~

Built-in repulsion




UNITARY ENSEMBLES OF RANDOM MATRIC

My = {N x N Hermitian matrices}

Py (dM) = ZL exp (—Tr V(M) dM

N N
where dM = Hdej HdRe(Mjk)dIm(Mj )

j=1 j#k
This probability measure on matrices induces a joint probability

density on their eigenvalues Ay < --- < Ap:

N

1

- [ = Aj) exp ( > V()\i)) ,
i<j i=1

with the corresponding partition function

ZN:/R.../R [ = Aj)% exp (ivw)) dA1...d\N

1<
1
The free energy of this matrix model is 'y = ) In Zpn

Nl — g s T N ew




UNITARY ENSEMBLES OF RANDOM MATRIC

My = {N x N Hermitian matrices}
I

Py(dM) = — exp(—TrV(M)) dM
ZN N N
where dM = | [ dM;; | [ dRe(Mji) dIm(Mjy)
=1 j#k
N
i / / [ = Aj)2exp (—ZV(AZ-)) dr R
R R i< =1
Heuristics: Zn = <6_2E(>\1""’>\N>

1 e
E(A,.. An) = Y log e 52 V)
1 ]:1

1<)
For large IV, the expected distribution of A;’s minimizes E.

This minimizer is the equilibrium measure in an external field
given by V.




' Polynomials?

What about |
Orthogonal |



CONNECTIONS WITH O. R

There is another way to look at the expected distribution.

Recall the well-known formula by Heine (~ 1878): if 1 is a mea-

sure, then
/ / H (=) [ [ = M) du(M) - du(Aw)

<k
is orthogonal with respect to p:

/PN(x)xkd,u(x) —0, k=01. A8
R

Compare it with the probability measure of the eigenvalues,

% .()\7;—)\ exp( ZV )

to conclude that the average characteristic polynomial of the uni-
tary matrix ensemble is orthogonal with respect to e~V ®)dz.

But not only that.



CONNECTIONS WITH O. R

Observation: N Vandermonde

[ (2 — X)) = det
,L<j o o o o o :

I[N T i

we can combine columns (almost) freely, replacing monomials in
A; by monic polynomials!

Thus,
(R e Y FPo(A1) P\ o R
1 D S YA Po(A1)  Pi(hs) o0 RO
det , = det . :
IR )\% Po(A1) Pa(Any) o0 B
Moreover,

(det(A))? = det(A) det(A*)



CONNECTIONS WITH O. R

Observation: N Vandermonde

[ (2 — X)) = det
,L<j . . o o o :

I[N T i

we can combine columns (almost) freely, replacing monomials in
A; by monic polynomials!

We conclude that if p,, are the orthogonal polynomials w.r.t. the
weight w(x) = exp(—V(z )) then (up to normalization),

H()‘ Tad >\ eXp ( ZV ) — det(KN(Aiy)\j))lgi,jSNy

1<J

where Ky (z,v) = v/w(z)y/w(y) —o pj( )p;(y) is the correla-
tion, reproducing or CD kernel.

This is an example of a determinantal point process.



CONNECTIONS WITH O. R

Crucial property (Gram):

/.../det [KN()\ja)\k)lgj,ng] d)\d_|_1...d)\N

= (N — d)!det [Kn(Nj, Ak)1<j k<d]

Consequence: the partition function 7 ~ and all statistics of the

eigenvalue distribution can be expressed in terms of the CD kernel
Kn.

In particular, for the large scale behavior, i.e. when N — oo,
we must study the asymptotics of the corresponding orthogonal
polynomials and their CD kernel (via de CD formula).

For instance, the density of the limit eigenvalue distribution is

given by
1
ot llina NKN(:E,:E).

N — o0



CONNECTIONS WITH O. R

Case of GUE: w(z) = e ; or after 7 — V Nz, wy(z) = e N7

Hence, taking py(x) as the Hermite polynomia,ls we can compute:

eew) = lim —KN(\/_:C VNz) = \/2—5132 x| < V2

N—oco /N

The semicircle
law




CONNECTIONS WITH O. R

Case of GUE: w(z) = e ; or after 7 — V Nz, wy(z) = e N7

Hence, taking py(x) as the Hermite polynomia,ls we can compute:

eew) = lim —KN(\/_:c VNz) = \/2—5132 x| < V2

N—oco /N

a.k.a. the equilibrium

measure in the external
field x2/2

It gives us the “global picture”; now we can study the local fluc-
tuations around different values (microscopic scale).



CONNECTIONS WITH O. R

Case of GUE: w(z) = e~ * ; or after z — vV Nz, wy (z) = e N |

Hence, taking py(x) as the Hermite polynomials) we can compute:

Woelz) — lim —KN(\/_x VNz) = \/2—$2 x| < V2

N—oco /N




CONNECTIONS WITH O. R

Case of GUE: w(z) = e~ * ; or after z — vV Nz, wy (z) = e N |

Hence, taking py (x) as the Hermite polynomials) we can compute:

1 1
psc(z) = lim —Kn(vVNz,VNz) == V2 —22, |z| <2
7

N—oco /N

. T Y
A}gnooNl/(iKN (\/QN | N1/6,\/2N| N1/6) = K (z,u), )=k

with : .
B - Ai(x)Ai (y) — Ai(y)Ai () -

L —Y \W .
04

where A: I§the Airy function. %




CONNECTIONS WITH O. R

Both K, and K 4; appear (in the bulk and at the “soft”
edge of the spectrum) for much more general weights w.

T




{ Also Multiple §
i  Orthogonal |
' Polynomials?



CONNECTIONS WITH M.O. P

Recall that given a system of measures ji1,...,us and a vec-
tor n = (ny,...,ns) C N° the multiple orthogonal polynomials
(MOP) of type II, P,, are polynomials of degree < |n| such that

/Pn(x)xkduj(x) =0, E=0,1,. " m; =1 = S
(There are also polynomials of Type I, not so important here).

Their asymptotics is also described by an equilibrium problem for
logarithmic potentials, but much more involved.

Instead of one measure, we now have a vector of measures that
interact with each other according to a certain law (given by the
geometry of the problem).

We seek for a minimizer of the global energy, that takes into ac-
count all the components.

This is an example of the vector equilibrium.



RANDOM MATRICES WITH EXTERNAL SOURC

Now the probability distribution on NV x N Hermitian matrices is

1
PN(M) = Z—G_TT(V(M))_AMdM,
N

where A is a fixed N x N Hermitian matrix.

The eigenvalues form again a determinantal process (Mehta).

Consider the average characteristic polynomial,

Pyn(z) =E|det (2 — M)]

for such an ensemble. Then I’'m a multiple OP (of Type )

/ PN(x)xke_V(w)_ajxda: — e s — 1L
R

where a; is the j-th eigenvalue of A of multiplicity m;.



Let’s talk about
random paths



PLANAR NETWORKS

Planar network (I', w) = acyclic directed (—) planar graph I with
scalar weights w assigned to its edges.

Weight of a directed path from ¢ to j = || weights of its edges.

Weight matrix = n X n matrix (a;;), with a;; = > weights of all
paths 7 — 7.

f
\ / .
&
b h

d 1

abd abdh + ae + ce abdhi+ (a+ c)e(g+1) + f

d dh dhi
bd bdh + e bdhi + eg + ei

S

Weight of a collection of directed paths = || of their weights.

Lindstrom Lemma: a minor given by the intersection of rows
I and columns J of the weight matrixz of a planar network = the
sum of weights of all collections of vertex-disjoint paths I — J.

Example: minor (2,3) x (2,3) is equal to bedegh + bdf h + fe.



NON-INTERSECTING RANDOM PATHS

Assume we have a 1-D strong Markov process with continuous
sample paths (1-D diffusion process) with the transition probabil-
ity density function p;(x,y).

Example: Brownian motion




NON-INTERSECTING RANDOM PATHS

Assume we have a 1-D strong Markov process with continuous
sample paths (1-D diffusion process) with the transition probabil-
ity density function p;(x,y).

Karlin & McGregor, 1959]: Suppose that n labelled particles
start out in states a1 < --- < a,, and execute the process simulta-
neously and independently. Then the determinant

pt(aflabl) pt(alabn)
det ; :

@ B a0 0 )

18 equal to the probability that at time t the particles will be found
in states by < --- < b, respectively without any two of them ever

having been coincident (simultaneously in the same state) in the
intervening time.




NON-INTERSECTING RANDOM PATHS

Assume we have a 1-D strong Markov process with continuous
sample paths (1-D diffusion process) with the transition probabil-
ity density function p:(x,y).

Karlin & McGregor, 1959]: Suppose that n labelled particles
start out in states a1 < --- < a, and execute the process simulta-
neously and independently. Then the determinant

pt(alabl) pt(aflabn)
det : :

@ B a0 0 )

ime t the particles will be found
ithout any two of them ever
Jusly in the same state) in the




NON-INTERSECTING RANDOM PATHS

Assume we are given

e initial positions at time O:
R < - - - < A

e end positions at time T > O:
by < by <--- < b,

| | | |
0 0.2 0.4 0.6 0.8 1
t

Then the (conditional) joint probability density function on R"™
of the n independent instances of this diffusion process with non-
intersecting paths at an intermediate time 0 < ¢ < 1" has the
form

1

Pl e R det(p:(a;, z;)) det(pr—i (x4, b5))-



NON-INTERSECTING RANDOM PATHS

Assume we are given

e initial positions at time O:
R < - - - < A

e end positions at time T > O:
by < by <--- < b,

| | | |
0 0.2 0.4 0.6 0.8 1
t

Again, the correlation kernel K,,, expressed in terms of p.(a,;, )
and pr_¢(x,b;), can be rewritten as

R 1) Z% TS ) where ¢; L ;.

We are interested in the confluent case (some a; or b; may collide).



NON-INTERSECTING RANDOM PATHS

Consider the Brownian motion:

Il N
e

Assume all a; =0 and b; =0

o 01 02 03 04 05 06 07 08 09 1

Let us see what happens in the Karlin & McGregor determinant,
where we have rows of the form

pt(CLl)bl)) pt(a’lpr)
pe(az,b1), ... pelaz,by)

when ao — aq.



NON-INTERSECTING RANDOM PATHS

Consider the Brownian motion:

Il N
e

Assume all a; =0 and b; =0

o 01 02 03 04 05 06 07 08 09 1

pt(alabl)a pt(@lbe)
Wrong: pe(ar,b1), ... pe(ar,by)
pt(alabl)a pt(albe) d

nght p;ﬁ(ala b1)7 Phi p;ﬁ(a’la bN) ) where p;(aa b) T _pt(a7 b)



NON-INTERSECTING RANDOM PATHS

Consider the Brownian motion:

Il N
e

Assume all a; =0 and b; =0

o 01 02 03 04 05 06 07 08 09 1

In the expression for K,, we may take ¢,;(x) = ¢;(x) = 7; (x)e‘xz/c(t),
where 7; = jth Hermite polynomial.

Conclusion: the correlation kernel K, for the confluent non-
intersecting paths performing a Brownian motion coincides with
that for the spectrum of the GUE. Both processes are statistically
identical!




NON-INTERSECTING RANDOM PATHS

Consider the Brownian motion:

1
pt(xay) T \/Tﬂ_t

Assume all a; = 0 but half
b; = b(1) and other half b=
b2 b1 £ p(2).

—(@—y)?/(20)

o 01 02 03 04 05 06 07 08 09 1

Now the correlation kernel is built out of multiple Hermite poly-
nomials, with

w=0C ) =t
e =tcn . wi(x)=e = (multiple OP ensemble).

Statistically = the eigenvalues of the GUE with external source,
when matrix A has only 2 eigenvalues: b)) and b(1).



That was a dirty trick to
create Multiple

i Orthogonal Polynomials!

) Can they appear naturally? §



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

A Brownian motion each
coordinate

/ R(t) = |X(#)|lz = vVX1(8)? + X2(8)2 + X3(t)2, t >0,

is the Bessel process with parameter a = £ — 1, while R?(¢) is the

squared Bessel process BESQY. Its transition probability is

1 /2
ey =5 (1) e, (L2, ay>o

:2_tx L

«

Y
(26)°F1T(a + 1)

py(0,y) = el y > 0.



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Consider a system of n particles performing BESQ? and condi-
tioned never to collide with each other, in the confluent case where
all particles start (f = 0) at the same value ¢ > 0 and all end
[ — 1) at 0.

Studied by Konig—O’Connell (2001), Katori-Tanemura (2007), and
Desrosiers-Forrester (2008). Related work by Tracy-Widom (2007)
on non-intersecting Brownian excursions.



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Consider a system of n particles performing BESQ? and condi-
tioned never to collide with each other, in the confluent case where
all particles start (f = 0) at the same value ¢ > 0 and all end
[ — 1) at 0.

We are interested in the limit n — oo, under time rescaling (“slow

motion” ): / 1
t—m—, T'—w— = 0<t<l.
2n 2n



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

These non-intersecting squared
Bessel paths constitute a multi-
ple orthogonal ensemble!

Consider a system of n particles performing BESQ? and condi-
tioned never to collide with each other, in the confluent case where
all particles start (f = 0) at the same value ¢ > 0 and all end
[ — 1) at 0.

We are interested in the limit n — oo, under time rescaling (“slow

motion” ): / 1
t—m—, T'—w— = 0<t<l.
21 2n



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Behavior for large n:

2L
18}
16}

14}

12

1
0.8
06

04}

0.2}

0

0 Ol1 012 0.3 014 0_5 016 0.17 018 019 ; 0 Ol1 Ol2 013 014 0_5 06 0.l7 0l8 019 ;
Vvt € (0,1), the limiting mean density of the positions of the paths

1
(explicit) p(x) = p(x;t) = lim —K,(x,z;t)

n—o00 N,

exists, and is supported on [p(t),q(t)], where x = p(t), x = q(t)
are non-negative roots of an explicit polynomial of degree 3.



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Behavior for large n:

2L
18}
16}

14}

1.2

1
0.8
06

04}

0.2}

0 1 1 & 1 1 1 1 ] | 1 | ] I I 1
0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 05 06 0.7 0.8 09

The boundary curve x = p(t) is positive for ¢t < t* =
a/(a+1) and it is zero for t > t*. At t = t* it has continuous first

and second order derivatives.



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Behavior for large n:

2L
18}
16}

14}

&2

1
0.8
06

04}

02}

0

1 1 I\ 1 | | | ] 1 1 1 1 | | 1 J
0 0.1 0.2 03 04 05 06 07 08 09 1 0 0.1 0.2 03 04 05 06 07 08 09 1

The upper boundary curve x = ¢(t) has a slope ¢'(1) = —4 at
t = 1 which is independent of the value of a.

It is concave if a < 1, and not concave on |0, 1] if a > 1.

The maximum of the upper boundary curve x = ¢(t) is a + 1.



SQUAR

Behavior for large n:

In the bulk:

b

Sine kernel

If t = t*, then for * € (p(t), q(t)), we I

, 1
lim
n— 0o np(aj

LAEE

=55

X

mapolt |t

D=3 18

:SQB)

~ sin m(x —y)

uniformly for £ and y in compact subsets of R.

sl — 1)



SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Behavior for large n:

At the soft edge:

Airy kernel




SQUARED BESSEL PROCESS IN D=3 (BESQ?)

Behavior for large n:

At the hard edge:

Bessel kernel

If ¢t > t*, then for so

e constant ¢ > 0, and x,y > 0,
1 X
B (.
C

t)
n ’
n—oo Cn? e O |

NG AN A AVEE AL

z 2(z — y)



PROC

SQUARED BESSE

Behavior for large n:

Double scaling limit at
aae=and 1 = t™:

A new one

For some ¢ > 0 and x,y > 0,

mapolt |t

D=3 18

:SQB)

2.5

x

i =Ko (5

s e 3 20

Ein

/n

) = Ko7,

a new kernel involving a solution of zy"' + (a+2)y"” — 1y’ —y = 0.



SQUAR

Behavior for large n:

Double scaling limit at
aan—rrand t = 1"

2B

cmt
K m ST

aloS

PROC

mapolt |t

D=3 (BESQ?3)

/ / ta T/t—l—l/(2t2)—7'/s—1/(232)ea:t—ys dtds
2m tel J ses S SHeall




A method behind these
heat results!?



RIEMANN-HILBERT METHOD

Let n be even. We look for ¥ € C3*° analytic in C \ R such that

e on R,

S
O = —
Ssb
S
\V)
S

1

e Y (2) has the following behavior at infinity: as z — oo,

| 2" 0 0
Y(z):<l+0<—>> DR 0 - 7€ ERREs
¢ ey

easz—0,z2e C\R,,

) z[¢, if —-1<a<,
[ @Ol h(z) 1], h(z)=< log|z|, if 07— (0]
ez 1 ik if 0 < a.




RIEMANN-HILBERT METHOD

Bleher-Kuijlaars, 2004] The correlation kernel
Kn(z,y) = Kn(z,y3t)

can be computed as

1
2mi(x — y)

|
K (x,y) = (0 wi(y) wa(y) Y (y)Yy(2) 8

where Y is a solution of the mentioned RH problem.

-



TH

£ R-H ST

o

ST

i

e &

Idea of the asymptotic analysis:

Start with Y

|

1

conclude that l
I + small = S such that

|

-NT ANA

S(co) =1
S, (z) =S_(2) (I+ small)

YSIS




BIE R-1 S| EEPEST DESCEN [T ANAERSS

Idea of the asymptotic analysis:

Start with Y = get an asymptotic expression for Y

il
U
conclude that I

Sfeg) = I
I+ small = S such that
Si(2) =S_(z2)(I+ small)



RIEMANN-HILBERT METHOD

A crucial step: normalization at infinity

Important ingredient: solving the vector logarithmic equilibrium.

dx 7t

2 e ﬁ‘x‘—1/27 X € (_0070]° Sp(x) = t(lm— t) 2\{5@

Normalization at oo is done using the solution of this problem.



RIEMANN-HILBERT METHOD

A crucial step: normalization at infinity

Important ingredient: solving the vector logarithmic equilibrium.

9 _ Vo172, 5 (~o0,0]. -

dr ple) = o

This path leads us to beautiful landscapes of Riemann surfaces
crossed by trajectories of quadratic differentials. . .



RIEMANN-HILBERT METHOD

A crucial step: normalization at infinity

Important ingredient: solving the vector logarithmic equilibrium.

do ) ﬁm—l/?

dx 7t

v 2+/a%

o —0 t

x € (—o0,0]. olE=

But this is another story...
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