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Some History

The Fuchsian group approach to �nite gap problems is due
to Sodin�Yuditskii [J. Geom. Anal. 7 (1997), 387�435] and
developed to get Szeg® asymptotics by Peherstorfer�
Yuditskii [J. Anal. Math. 89 (2003), 113-154]. This work
was extended and explicated in a series of papers by
Christiansen�Simon�Zinchenko [Const. Approx. 32 (2010),
1�65; 33, (2011), 365�403; 35 (2012) 259�272].

Much earlier Widom [Adv. Math 3 (1969), 127-232]
discussed OPs on unions of smooth curves and found the
almost periodicity we'll see in Lecture 10.
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A Pretty Graphic

The poster for the lecture series included the following
graphic:
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A Pretty Graphic

Clearly a pretty pattern, but what does it have to do with
OPs? This lecture will answer that. Let's begin by
analyzing some of its features.

It has one (faint) large circle that represents ∂D, the
boundary of the unit disk. All the other circles are
�orthocircles,� i.e., cross ∂D orthogonally.

This is no coincidence. They are geodesics in the hyperbolic
metric or rather the part within D are geodesics in the
Poincaré metric.
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A Pretty Graphic

They come in nested circles, three inside each earlier
�generation.�Indeed, this nesting really goes on inde�nitely
but we only show three generations.

There is an additional orthocircle showing�the straight line
(−1, 1).

The fact that there appear to be bigger and smaller, even
really tiny, circles is an artifact of the Euclidean view we
make so that the �circle at ∞� (∂D) is visible. For any
circle, even the really tiny ones, there is a Möbius
transformation which is an automorphism of D and isometry
in the hyperbolic metric mapping that circle to R and the
part inside D to (−1, 1).



Some History

A Pretty Graphic

Universal Cover

Fundamental
Domains

Fuchsian Group

Beardon's
Theorem

Blaschke
Products

Universal Cover of C ∪ {∞} \ e

Recall in analyzing Szeg® asymptotics and the
Shohat�Nevai theorem on [−2, 2], we mapped from D
(via z 7→ x = z + z−1) and considered log(M(z)/zB(z))
relating its Taylor coe�cients at z = 0 to its boundary
values and Taylor coe�cients of B(z).

We could take logs because C ∪ {∞} \ [−2, 2] was simply
connected and so an image of D.
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Universal Cover of C ∪ {∞} \ e

If ` ≥ 1, C ∪ {∞} \ e is no longer simply connected. To get
logs, we'll need to lift the function to the universal cover of
C ∪ {∞} \ e.

Any Riemann surface has a universal cover which is also a
Riemann surface since the local analytic structure �below�
lifts. The uniformization theorem says that this universal
cover is D except for a few special cases of the underlying
surface: C ∪ {∞}, C, a torus, C \ {0}.
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Universal Cover of C ∪ {∞} \ e

So there is a covering map x(t) from D to C ∪ {∞} \ e
which is many to one.

As with any covering map, there is a discrete group of
transformations which in this case preserve the complex
structure so are Möbius transformations of D to D.

Thus, there is a discrete group of Möbius transformations
(aka Fuchsian group), Γ, so that x(γ(z)) = x(z). Indeed,
x(z) = x(w)⇔ ∃ γ ∈ Γ with γ(z) = w.
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Finite Gap Fundamental Domains

If x is a map of the required type and g : D→ D is a
Möbius automorphism, then x ◦ g is also a covering map
although the Fuchsian group is now g−1Γg.

We normalize x by demanding x(0) =∞ and
limz→0,z 6=0 z x(z) > 0.

The Dirichlet domain of Γ is de�ned to be (ρ = Poincaré
metric tanh[ρ(w, z)] = |z − w|/|1− z̄w|)

D(Γ) = {w ∈ D | ρ(w, 0) = inf
γ∈Γ

ρ(w, γ(0))}
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Finite Gap Fundamental Domains

◦
D(Γ) = {w ∈ D | ρ(w, 0) < inf

γ 6=e
ρ(w, γ(0))}

◦
D(Γ) is the interior of D(Γ) and D(Γ) is the closure of
◦
D(Γ).

D and
◦
D are fundamental domains for x in that x is 1�1

on
◦
D, and in our case, 2�1 on D \

◦
D. It will turn out that

x[
◦
D] = C ∪ {∞} \ [α1, β`+1] and x is 1�1 on D \

◦
D ∩ C+.
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Finite Gap Fundamental Domains

By normalization, x(z) ∼ C/z, C > 0 near z = 0, so z
running from 0 to −1, has x(z) going from −∞ ∈ R up to
α1. Why α1? Because z → ∂D means x(z) must approach
a point of ∪`+1

j=1[αj , βj ].

We have thus proven x : (−1, 1) to R ∪ {∞} \ [α1, β`+1].

If we go slightly above [α1, β1] or below, x−1 maps onto a
piece almost on ∂D in C− (or C+).
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Finite Gap Fundamental Domains

If we now reach (β1, α2), x−1 must map in D along a curve.
If we had normalized, so that x̃(0) = 1

2(β1 + α2), by the
same analysis (β1, α2) would be the image of (−1, 1). Since
x̃ = x ◦ g, we see the curve must be an image of (−1, 1)
under a Möbius transformation, that is an orthocircle.
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Finite Gap Fundamental Domains

We can now understand part of the �gure.

We have 2 gaps and 3 bands and we can understand the
fundamental domain.
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Finite Gap Fuchsian Group

If e is a subset of R with ` gaps, the fundamental domain is
D with the �inside� of 2` disjoint orthocircles removed, ` in
the upper half-plane and their ` conjugates.

Let Cz = z̄ and let Rj be re�ection in the jth orthocircle in
the upper half-plane, explicitly if the circle is |z − zj | = rj ,
then

Rjz = zj +
r2
j

z̄ − z̄j
which is a conjugate Möbius transform with Rj∞ = zj ; Rj
leaves the orthocircle pointwise �xed.
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Finite Gap Fuchsian Group

Let γj = RjC which is a Móbius transformation.

Since x is real on (−1, 1), x(z̄) = x(z).

Since x is real on orthocircle associated to Rj ,

x(Rjz) = x(z).

Thus, x(γjz) = x(z), i.e., γj ∈ Γ.

It is not hard to show that Γ is generated by the γj 's.
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Finite Gap Fuchsian Group

We now return to our example

The second generation circles inside one of the �rst
generation circles are exactly the image of the three other
�rst generation circles, etc.
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Finite Gap Fuchsian Group

Λ = {limit points of {γ(0) | γ ∈ Γ}}

is easily seen to be nowhere dense and we'll shortly see that
it is of Hausdor� dimension strictly less than 1.

x has an analytic continuation to ∂D \ Λ since it has
boundary values (mapping to ∪`+1

j=1[αj , βj ]) and we can use
the Schwarz re�ection principle.

Indeed, x has a meromorphic continuation to C ∪ {∞} \ Λ.
By mapping C \ D̄ to S−, one sees this extended x is
essentially a covering map of S.
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Beardon's Theorem

A. F. Beardon (Acta Math. 127 (1971), 221�258) proved
an important result about certain �nitely generated Fuchsian
groups that include the ones associated to �nite gap sets.

It has all of the following consequences:

The set of limit points of the orbit {γ(0) | γ ∈ Γ}
(which is the same as the limit points of
{γ(z) | γ ∈ Γ} for any z ∈ D) has Hausdor� dimension
strictly less than 1.
If Rk is the union of the interiors of all 2`(2`− 1)k−1

orthocircles at generation k, and ∂Rk = ∂D ∩Rk and
|·| is dθ/2π measure, then |∂Rk| ≤ C0e

−C1k.
For some s < 1, we have∑

γ∈Γ

(1− |γ(z)|)s <∞ for all z ∈ D

so, in particular, this holds for s = 1.
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Blaschke Products

Since
∑
|1− γ(z0)| <∞, we can form the Blaschke

products

B(z, z0) =
∏
γ∈Γ

bγ(z0)(z)

bγ0(zj)(z) and bz0(γ−1
0 (z)) have the same zeros and poles

and so the ratio is a constant, which is magnitude 1 on ∂D,
so a phase factor. Since {γγ0 | γ ∈ Γ} = {γ ∈ Γ}, we see
that for each z0, there is Cz0(γ) a map of Γ to ∂D so that
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Blaschke Products

B(γ(z), z0) = Cz0(γ)B(z, z0)

Such a function is called character automorphic.

Thus, − log|B(z, z0)| de�nes a function on
C ∪ {∞} \ e ∪ {x(z0)}, is harmonic on that set and goes to
zero as one approaches e. (since |B(z, z0)| → 1 as z ∈ ∂D
in the �bands�).



Some History

A Pretty Graphic

Universal Cover

Fundamental
Domains

Fuchsian Group

Beardon's
Theorem

Blaschke
Products

Blaschke Products

Since − log|B(z, z0)| has a log singularity as x(z)→ x(z0)
we see it is a potential theorist's Green's function with
charge at x(z0).

In particular, if B(z) ≡ B(z, 0), we see that

|B(z)| = exp(−Ge(x(z)))

If x∞ is de�ned by x(z) = x∞
z +O(1)

B(z) =
C(e)

x∞
z +O(z2)

ρe([αj , βj ]) is related to change of argB over a piece of ∂D.
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Blaschke Products

A further result we'll need is that if {zj}∞j=1 ⊂ D(Γ)

and ∑
j

(1− |zj |) <∞

then
∏∞
j=1B(z, zj) is absolutely convergent and de�nes a

function vanishing exactly at {γ(zj) | j = 1, . . . ,∞; γ ∈ Γ}.

The restriction that the zj lie in D(Γ) is critical because
otherwise

∏
γ∈ΓB(z, γ(0)) would be absolutely convergent

which it is not.
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