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Case 0 Sum Rule

Case 0 Sum Rule

Recall Cy step-by-step says
—log(a1) = Z(pn) = Z(p1) + &o(J) — Eo(J1)

where & (J) = Zj,:t log |BE(J), E=B+pB71 |8 >1
and Z(u) = —35(u® | p) — log 2
(Note S(u | pig) = —1log 2)

=+ [log (Imi\i/?(in do.

dp® = Sz(%). Recall dpy = Sz(sin? 0 d?e) is free half-line.

So formally, Cy is

—log()_aj) = Z(n) — Eo(J)

=1

Unlike P, not all terms positive.



(Extended) Shohat—Nevai Theorem

Theorem (Extended Shohat-Nevai Theorem). Let
du = f(x)dx + dus. cess(J) = [—2,2]. Suppose that

. 1
A > (1ER=2)? < oo
n,t

Then

2
/ (4—x2)*%log f(x) > —oo & limay ---a, >0
-2

In that case

Z(an —1)2+0b <00
n=1
Hivzl an, Zﬁ;l(an —1), Zgzl by, all have limits

(in (0,00), resp., (—o0,00) )




(Extended) Shohat—Nevai Theorem

Remarks. 1. S (|E£| — 2)2 < oo is called Blaschke
condition for reasons we'll see below.

Shohat-Nevai . . .
Theorem 2. One variant of this theorem is that among the three

conditions:

() S(E| - 2)2 < oo;

(ii) Szegd integral > —oo,

(iii) lim (aj - - - a,,) exists in (0,00) (not just lim),
any two imply the third.

3. Recall Lieb—Thirring (proven for Jacobi by
Hundertmark-Simon)

1 1
SEE —2)P < S (Jan — 1PF2 + [ba|P*2) for p > L.



(Extended) Shohat—Nevai Theorem

Thus J — Jy € {1 (trace class), equivalent to
Shohat-Nevai . . o
Theorem > lan — 1| + |by| < oo implies both Blaschke condition
and lim (ay - - - ay,) exists so we have

Nevai Conjecture. ) |a, — 1| + |by| < 00 = Szegé
condition.

We refer you to [SzTh], Section 3.8 for the proof of the
extended Shohat—Nevai Theorem.The idea is to use the C
step-by-step sum rule and Isc of Z much like we did for
Killip-Simon.



Szegdé Asymptotics—Results

Theorem (Damanik-Simon [Inv. Math 165 (2006), 1-50]).
Let the Jacobi parameters obey

o (3) S5 s (o — 12 B2 < oc
—Results (b) hmn*)oo H?:1 (Ij and
(c) limy 00 D271 by exist in (0,00) and R.

Then, for all z € D\ {0} with z + 2= ¢ o(J),
lim,, 00 2™ pn(z + 271) exists uniformly on compacts and is
non-zero.

Conversely, if that limit exists uniformly and is non-zero for
{z | |z| =r} for all r € (0,¢), then (a)—(c) hold.



Szegdé Asymptotics—Results

Corollary (Peherstorfer-Yuditskii [Proc. AMS 129 (2001)
3213-3220]). 1Y, L (|BE| —2)7 < 0o and Szegs
condition holds, then lim 2™ p,(z + 27 1) exists, etc.

Sz Asym For by Shohat—Nevai, we get all the required conditions for
—Result:
= above theorem.

For each % <p< % Damanik-Simon construct examples
with a, =1, Y20 b2 < oo, limy, a0 > _i—1 bj exists but

n=1"n

Y| = 2)P = 0.

For such examples, the Szeg6 condition fails, but you still
get Szegd asymptotics | This came as a surprise to many.
Of course, if an £2 condition holds, then the sum is finite for
p = 3/2 by Killip—Simon.



Sz Asym
—Results

Szegdé Asymptotics—Results

Here is the idea of the construction, at least if p < 1.

For whole line a,, = 1, b, =0 for n # 0, by = +¢ has a
single eigenvalue of size 42 + Ce? + O(e?).

(I think C = 17)

Fix a sequence of numbers 3; of alternating sign, |5;| — 0,
B1 >0, and integers, 0 < my1 < mo < .... Take a, =1,
bn =0ifn ¢ {m]} bmj = Bj- As mi,Mmj41 — My, ... all
get very large, J has eigenvalues very close to

(1) 2+ CB7], at least for j large.

Take B; = k78, j =2k —1; B; = kP, j = 2k.
Trivially, 25:1 B converges to 0 and if § > %
32 b2 < oo.

n=1%n

|ES| =2~ Cj . 1f 28p <1, Y (|Ef| — 2)P = .



Szegdé Asymptotics—Results

That Szeg8 asymptotics implies the conditions on the a’s
and b’s is not hard. For each n, for z near 0,

L (14203 b))+ 0()

Jj=1

n — =
Sz Asym z pn(2+ Z)

—Results ai - Qp
s0 2" pn(z + 1) is analytic near z = 0 and Szegs
asymptotics implies convergence of the Taylor coefficients.

The first two coefficients give convergence of [[] a; and
Y1 b; by the above and the third coefficient yields the
conditional convergence of > 7'(a; —1)% + b]z but since the
sum of positive numbers, conditional convergence implies
absolute convergence.



Jost Asymptotics

In the last lecture, we defined the Weyl solution, g, (),
zeC\a(J)

We say we have Jost asymptotics at zq if and only if

1 1

. o ) .
nh—golo “0 gn(Zo + ZO) N U(Z())

Jost Asymptotics (n+1

exists and is non-zero. In that case, u is called the Jost
function, the Jost solution is defined to be

un(2) = —u(z) gn-1(z + 1)

SO Uy (2) ~ 2™



Jost Asymptotics

Define Ty = gn(ZO + %), Yn = ngn(zo -+ %)

Theorem (Damanik-Simon). Suppose a,, — 1, b, — 0.
Fix zg. Then lim x, = x, if and only if im y,, = Yo, and
then

1 21
Jost Asymptotics Loo Yoo = (]‘ z )

Proof (Christensen-Simon—Zinchenko [Const. Approx 33
(2011), 365-403]). The Wronskian of p,, and ¢, is 1, so the
Wronskian of p, and g, = ¢, + mpy, is 1 also. Thus, with
Gon = (6n, (J — (2 + 271))716,)

Gnn = pnfl(z + Z_l) gnfl(z + Z_l)



Jost Asymptotics

Jost Asymptotics

Let Jy be the whole line free (a, = 1,b, = 0) Jacobi
matrix.

Then, G\ (2) = (6n, (Jo — (2 + 271))716,)

—1)—1

=—(z—z
(by computing Wronskian of 2= and z")

and @y — 1, by = 0 = lim G (2) = G (2).

Thus, yn_12Zn_1 — (1 — 22)~! = result.



Peherstorfer-Yuditskii Approach

Rather than prove Jost asymptotics in the Damanik—Simon
generality, we suppose we have a Szeg6 condition and a
Blaschke condition and sketch how to get Szegé
asymptotics directly but still using the Jost function. (Our
approach follows Peherstorfer-Yuditskii.)

The condition Z||Eji| = 2|% < o0 is equivalent to
Vodnoi (1 —|8F]) < oo where EF = 55+ (85)71, [ < 1
Approach ] J - ] ] ! J ’
Thus, B(z) =[] bs+(2) exists (hence Blaschke condition)
J

and one defines

et 4 4 sin 0 do
u(z) = B(=) exp ( / 72 8 (Gmre®) 2r)

where Tm M (e?) = nf(2cos ) (if 0 < 6 < 7).



Peherstorfer-Yuditskii Approach

By the Szeg6 condition, the integral defines a function E(z)
with (1 — 22) E(2)~! € H?.

A calculation reminiscent of Szeg6's yields

Peherstorfer-
Yuditskii

Approach
/]pn(a:)\2 dus(z) goes to zero.

This implies Szeg6 and Jost asymptotics and that u as
defined above is the Jost function.

Im [ﬁ(eiﬂ(x))ei(n+l)0(z)] 2

Pal@) = Sn(0(2)) fla)du+
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