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Right Limits

Right limits were introduced and studied by Last�Simon in
two papers [Inv. Math. 135 (1999), 329�367; J. Anal.
Math. 98 (2006), 183�220].

Given a set of bounded (one-sided) Jacobi parameters
{an, bn}∞n=1, we say a two-sided sequence {ãn, b̃n}∞n=−∞ is
a right limit if there exists mj →∞ so that for all `, as
j →∞,

amj+` → ã`; bmj+l → b̃`

The set of all right limits is denoted R(J). By
compactness, it is non-empty and a closed subset of
[−R,R]∞ in the product topology (R = supn|an|+ |bn|).
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Right Limits

We say λ ∈ σ∞,pp(J̃) if and only if ∃u ∈ L∞, u 6≡ 0, with

J̃u = λu. By a Weyl sequence argument, σ∞,pp(J̃) ⊂ σ(J̃).

Last�Simon proved (σ∞,pp(J) is from [SzThm] book)

Theorem. σess(J) = ∪Jr∈R(J)σ(Jr) = ∪Jr∈R(J)σ∞,pp(Jr)

That σ(Jr) ⊂ σess(J) is easy. If un has �nite support with

‖(Jr − λ)u‖ < ε, then with u
(j)
n = umj+n, we have

limj→∞‖(J − λ)u(j)‖ ≤ ε and u(j) → 0 weakly.

The other parts are not hard but somewhat involved.

Last�Simon also proved Σac(J) ⊂ ∩JrΣac(Jr).
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Re�ectionless Jacobi Matrices

A re�ectionless Jacobi matrix on e ⊂ R is a whole line
matrix obeying

∀n, Gnn(x+ i0) ∈ iR for a.e. x ∈ e.

It is su�cient that this holds for three successive n's.

By the re�ection principle (di�erent re�ection!), we have
that if (a, b) ⊂ e, then Gnn is continuous on (a, b), so J has
purely a.c. spectrum on (a, b).
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Re�ectionless Jacobi Matrices

Given J , a whole line Jacobi matrix, J+ and J− are the
Jacobi matrices with parameters {an, bn}∞n=1 and

{a−n, b−n+1}∞n=1 and J̃ with parameters {a−n−1, b−n}∞n=1.

J+/− are the two pieces we get by setting a0 = 0 and J+

and J̃ by setting a0 = a−1 = 0 = b0. m
±, m̃ are their

m-functions. The u± formulae for G and m yield

G00(z) = −
(
a2

0m
+(z)−m−(z)−1

)−1

G00(z) = −
(
z − b0 + a2

−1m̃+ a2
0m

+
)−1
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Re�ectionless Jacobi Matrices

A basic fact is

Theorem. J is re�ectionless if and only if for a.e. x ∈ e

m+(x+ i0) =
(
a2

0m
−(x+ i0)

)−1

⇐⇒ a2
0m

+(x+ i0) = b0 − x− a2
1m̃(x+ i0)

These conditions imply G00(x+ i0) is pure imaginary since
Re
(
a2

0m
+(x+ i0)− (m−(x+ i0))−1

)
= 0.
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Re�ectionless Jacobi Matrices

To get full result, one shows that Weyl solutions for J+ and
J̃ , call them u+

n and u−n , have a.c. boundary values (since m
does). ReGnn(x+ i0) for n = 0,±1 is equivalent to (all at
x+ i0) Im(u+

n u
−
n ) = 0 for n = ±1 and W (= Wronskian)

has ReW = 0 and that this is equivalent to u−n = u+
n .
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Re�ectionless Isospectral Torus

Suppose now e = ∪`+1
j=1[αj , βj ] is a �nite gap set. Let J be

re�ectionless on e with σ(J) = e. Let m+(z) be the
m-function for the half-line operator J+.

Since m+ is real in the gaps and on (−∞, α1) and
(β`+1,∞), we have that

m+(x+ i0) = m+(x− i0) = [a2
0m
−(x− i0)]−1

This implies that m+ de�ned on S+ can be analytically
continued to S− by de�ning it to be (a2

0m
−(z))−1 on S.

Since m− has a zero at ∞, (m−)−1 has a pole there.
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Re�ectionless Jacobi Matrices

The only other possible poles are in the gaps.

(a0m
−(z))−1 = b0 − z − a2

1m̃(z), so (a2
0m
−)−1 has a pole

⇔ m̃ does.

G00 = −(z− b0 + a2
−1m̃+ a2

0m
+)−1 shows that if m̃ or m+

have poles at x0 ∈ (βj , αj+1), then G00 has a zero there.

Since G00 is monotone (and bounded) on (βj , αj+1), it has
at most one zero there. If it has a zero at x, either m+ or
m̃ or both have a pole there.
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Re�ectionless Jacobi Matrices

If m+ and m̃ both have poles there, one can show the Weyl
solutions agree and vanish at n = 0 which implies the whole
line problem has an eigenvalue at x, contrary to our
hypothesis that σ(J) = e.

Thus, at a zero of G00 in a gap m+ has a pole at precisely
one of the points z± with π(z±) = x0. A further analysis
shows that if G00 has no zeros in a given gap, it vanishes at
one end or the other where one has a simple pole in the
local coordinates.
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Re�ectionless Jacobi Matrices

We thus see if J is re�ectionless on e and σ(J) = e, m+ is
a minimal Herglotz function. Conversely, if m+ is a minimal
Herglotz function, (a2

0m
+(τ(z)))−1 de�nes a J− (where a2

0

is picked so (a2
0m

+(τ(z)))−1 ∼ −z−1 near ∞+) and J
+,

a0, J
− �t together into a re�ectionless J . We have thus

proven:

Theorem. There is a 1-1 correspondence between the

isospectral torus on e (de�ned as minimal Herglotz

functions) and re�ectionless J 's.
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Remling's Theorem

Remling proved the following remarkable theorem:

Remlings Theorem. If J is a half-line Jacobi matrix and

e ≡ Σac(J) 6= ∅, then any right limit, Jr, is re�ectionless

on e.

There is an attractive intuition: Jr repeats in�nitely often
far from each other. If there were any re�ection, a wave
would get trapped by the in�nitely many re�ections but by
Riemann�Lebesgue, a.c. wave packets get �out� to ∞.
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Remling's Theorem

Alas, no one has a proof using this intuition. The only proof
we have is Remling's original proof which takes 20 dense
pages in [SzThm] and which I can follow but don't
understand!
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Denisov�Rakhmanov�Remling Theorem

Theorem (Rakhmanov [Math. Sb. 32 (1977), 199�213;
46 (1983), 105�117]). Let dµ = f dθ2π + dµs on ∂D with

f(θ) > 0 for Lebesgue a.e. θ. Then αn(dµ)→ 0.

Theorem (Denisov [Proc. A.M.S. 130 (2004), 847�852).
Let dµ = fdx+ dµs; ess supp(dµ) = [−2, 2]; f(x) > 0 for

a.e. x ∈ [−2, 2].

Then an(dµ)→ 1, bn(dµ)→ 0.

Theorem (Damanik�Killip�Simon, Ann. Math. 171
(2010), 1931�2010). Let e be a �nite gap set with each

band having rational harmonic measure. Let

dµ = fdx+ dµs; ess(dµ) = e; f(x) > 0 for a.e. x ∈ e.
Then, as `→∞, {an−`, bn−`}∞n=1 approaches the two-sided

(periodic) isospectral torus for e.
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Denisov�Rakhmanov�Remling Theorem

Theorem (Remling [Ann. Math 174 (2011), 125�171]).
The last theorem holds for any �nite gap set, e.

Remarks. 1. This was conjectured by
Damanik�Killip�Simon.

2. This implies the Denisov result and also Rakhmanov
once one has an extension of Remlin to OPUC which was
accomplished by Breuer, Ryckman, Zinchenko [Comm.
Math. Phys. 292 (2009), 1�28].

The DRR Theorem is an immediate consequence of
Remling's Theorem and the analysis of J 's re�ectionless on
e with σ(J) = e.
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The Magic Formula

Theorem (Damanik�Killip�Simon [Ann. Math. 171
(2010), 1931�2010]). Let ∆ be the discriminant associated

to a �nite gap set e ⊂ R with rational harmonic measures

(∆ is degree p, measures are qj/p with no common factor

for p ∪ {qj}`+1
j=1). Let J be a whole line Jacobi matrix and

S : `2 → `2 by (Su)n = un−1. Then

∆(J) = Sp + S−p ⇔ J ∈ isospectral torus for e

DKS called this the magic formula.
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The Magic Formula

Recall for J ∈ isospectral torus, ∆(E(θ)) = 2 cos θ where
E(θ) are eigenvalues of Floquet solutions with
un+p = eiθun. In a suitable spectral representation Sp is
multiplication by eiθ and J by E(θ) so that the above
shows that ∆(J) = Sp + S−p.
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The Magic Formula

For the converse, if ∆e(J) = Sp + S−p, then [J,∆e(J)] so
[J, Sp + S−p]. Using that J has �nite width, this implies
(an argument of Naiman [Soviet Math. Dokl. 3 (1962),
383�385]) [J, Sp] = 0, i.e., J has periodic p.

Thus, ∆J(J)−∆e(J) = 0. Again, using �nite width of J ,
p(J) = 0 for a polynomial ⇒ p = 0. Thus ∆J = ∆e ⇒ J ∈
isospectral torus.



Topics

Right Limits

Refelectionless
Jacobi Matrices

Isospectral
Toruus

Remling's
Theorem

DRR Theorem

The Magic
Formula

CMV Matrix

Fine Structure of
OP Zeros

The CD Kernel

The Magic Formula

To use this idea, note that in general, if J is a Jacobi
matrix, ∆(J) is not tri-diagonal but 2p+ 1 diagonal (since
(J `)kj 6= 0⇒ |k− j| ≤ `) which can be thought of as p× p
block tridiagonal.

The DKS strategy is to extend results on approach to
[−2, 2] to the matrix-valued case.
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The Magic Formula

For example, to get the extension of Denisov, if J has
Σac(J) = e, then ∆(J) has multiplicity p a.c. spectrum on
[−2, 2]. By a matrix extension of Denisov, this implies all
right limits of ∆(J) are Sp + S−p. By the Magic Formula,
this proves any right limit Jr obeys ∆(Jr) = Sp + S−p, so
Jr ∈ isospectral torus.
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The Magic Formula

DKS are thus able to prove

DRR for periodic (also follows from Remling)

Shohat-Nevai for perturbations of isospectral torus
(also follows from CSZ)

Lieb�Thirring and so Nevai conjecture for perturbations
of periodic (also follows from Frank�Simon)

Killip�Simon for perturbations of periodic with all gaps
open (only known proof!)
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CMV Matrix

In 2003, Cantero, Moral, and Velázquez [Linear Alg. Appl.
362 (2003), 29�51] found the �right� matrix representation
for OPUC 82 years after Szeg® invented OPUC! Its
usefullness for spectral theory of OPUC was found by
Golinskii�Simon and presented in Section 4.3 of [OPUC].

Just as Jacobi matrices come from general self-adjoint
operators with cyclic vector, CMV matrices come from
unitary matrices with cyclic vector and in this form (without
the OPUC connection) they were found in the numerical
linear algebra community in 1991 by Bunse-Gerstner�Elsner
[Linear Alg. Appl. 154 (1991), 741�678].
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CMV Matrix

For OPUC, orthonormalized zn may not give a basis for
L2(∂D, dµ). CMV had the idea of orthonormalizing,
1, z, z−1, z−2, . . . which always gives a basis!

Remarkably, the resulting basis, {χj}∞j−0 can be expressed
in terms of the ϕn's and ϕ

∗
n's. If

σn = χ2n, τn = χ2n−1; n = 0, 1, 2, . . . (n ≥ 1 for =)

then σn = z−nϕ∗2n, τn = z−n+1ϕ2n−1



Topics

Right Limits

Refelectionless
Jacobi Matrices

Isospectral
Toruus

Remling's
Theorem

DRR Theorem

The Magic
Formula

CMV Matrix

Fine Structure of
OP Zeros

The CD Kernel

CMV Matrix

If instead, one orthonormalizes, 1, z, z−1, z−2, . . ., one gets
an ON basis, {xj}∞j=0 and if sn = x2n, n = 0, 1, 2, . . .,
tn = x2n−1, n = 1, 2, . . ., then

sn = z−nϕ2n, tn = z−nϕ∗2n−1

One de�nes the CMV and alternate CMV matrices by

Cij(dµ) = 〈χi, zχj〉; C̃ij(dµ) = 〈xi, zxj〉
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One de�nes Lij(dµ) = 〈xi, χj〉, mij(dµ) = 〈χi, zxj〉 so one
has the LM factorization

C = LM, C̃ =ML

If Θj = (
ᾱj ρj
ρi −αj

)

then L = Θ0 ⊕Θ2 ⊕Θ4 ⊕ . . .

andM = 11×1 ⊕Θ1 ⊕Θ3 ⊕ . . .
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Thus, C is 5-diagonal with structures of 4× 2 blocks.

Matrix elements are quadratic in α's and ρ's, explicitly

C =



ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
. . . . . . . . . . . . . . . . . .


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Consequences of CMV

New proof of Verblunsky's Theorem

Trace class theory:

∞∑
j=0

|αj−α̃j | <∞⇒ C(α)−C(α̃) ∈ `1 ⇒ Σac(α) = Σac(α̃)

Weyl Theorem:

αj − βj → 0⇒ σess(α) = σess(β)

New proof of Geronimus Relatins [Killip�Nenciu, IMRN
50 (2004), 2665-2701]

Haar on CUE induced measures on Verblunsky
coe�cients [Killip�Nenciu, IMRN 50 (2004),
2665-2701]
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Fine Structure of OP Zeros

We've discussed the DOS but that only tells part of the
story of the distribution of zeros for OPs.

In the next two slides, I'll show you the zeros for two
di�erent sets of Verblunsky coe�cients. One has the α's
iidrv�unfortunately uniform in a real interval (hence the
complex conjugate symmetry) rather than uniform on some
circle. I'm not sure of the DOS.

The other is αn = (3
4)n+1 where the DOS is known (a result

of Mhaskar-Sa�) to be uniform on the circle of radius 3/4.
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Fine Structure of OP Zeros

Here is the random case�which looks irregular:

In the rotation symmetry case, it is known to be Poisson
[Stoiciu, JAT 139 (2006) 29�64; Davies�Simon, JAT 141

(2006), 189�213]
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Fine Structure of OP Zeros

And here is the exponential decay case�which looks regular:

In this case, the zeros are asymptotically equally
spaced�which I called clock spacing.
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Fine Structure of OP Zeros

I want to focus on the clock-spacing case, but for OPRL,
not OPUC.

When an → 1, bn → 0, the DOS will be the equilibrium
measure, ρe(x)dx for e = [−2, 2], i.e.,

ρe(x) = π−1(4− x2)−1/2

so clock only means locally equally spaced.

If x
(j)
n (E0) is the zeros of pn(x) with x

(−2)
n < x

(−1)
n <

x
(0)
n < E0 < x

(1)
n . . . then clock spacing is

n
[
x(j+1)
n − x(j)

n

]
→ 1/ρ(E0)
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Fine Structure of OP Zeros

The earliest general clock-spacing results are due to
Erd®s�Turan [Ann. Math. 44 (1940), 510�553] and very
general results are in Last�Simon [Comm. Pure Appl.
Math. 61 (2008), 486�538].

But I want to focus on a wonderful approach of
Lubinsky�actually two approaches, both based on the CD
kernel [Lubinsky, Ann. Math. 170 (2009), 915�939; J.
Anal. Math. 106 (2008), 373�394]
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Fine Structure of OP Zeros

With his �rst method, Simon [J. Math. Anal. 105 (2008),
345�362] and Totik [Ark. Mat. 47 (2009), 361�391]
obtained clock space for fairly general a.c. dµ on sets e with
eint = e and Avila�Last�Simon [Anal. PDE 3 (2010),
81�108], using Lubinsky's second method, even have some
results for a.c. spectrum on positive measure Cantor sets.

Here, we'll focus on the underlying method.
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A critical tool is the CD (for Christo�el Darboux) kernel

Kn(x, y) =

n∑
j=0

pn(x)pn(y)

which is the integral kernel in L2(R, dµ) of the projection
into polynomials of degree n or smaller.

Theorem (CD Formula). For x 6= y

Kn(x, y) =
an+1

(
pn+1(x)pn(y)− pn+1(y)pn(x)

)
x− y
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Proof. If Ln(x, y) = an+1

(
pn+1(x)pn(y)− pn+1(y)pn(x)

)
recursion relation for xpn(x) times pn(y) minus recursion
relation for ypn(y) times pn(x) says

(x− y)pn(x)pn(y) = Ln(x, y)− Ln−1(x, y)

This plus induction says that CP formula holds.
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Universality on [−2, 2] = e says, for any compact interval
I ⊂ [−2, 2],

1

n+ 1
Kn(xn, xn)→ ρe(x∞)

w(x∞)
if say n|x− x∞| ≤ A

uniformly in x∞ ∈ I and xn's with A �xed.

Kn(x∞ + a
n , x∞ + b

n)

Kn(x∞, x∞)
→

sin
(
πρe(x∞)(b− a)

)
πρe(x∞)(b− a)

uniformly in x∞ ∈ I, |a| ≤ A, |b| = A.
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Theorem (Freud�Levin Theorem). Universality ⇒ clock

spacing.

Proof. By CD formula, if pn(x) = 0, y 6= x, then
pn(y) = 0⇔ Kn(x, y) = 0 (since pn(x) = 0⇒
pn+1(x) 6= 0).

Universality controls zeros of Kn for n large. Explicity
Kn(x, y) 6= 0 if |x− y| ≤ α

ρe(x) with 0 ≤ α < 1 and n large.

Zeros of sin says at least one zero near zero + k
ρe(x∞) and

above says no more than 1.
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Lubinsky provided two methods of proving universality.

See his papers or Sections 3.11 and 3.12 of [SzThm].
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