QGM PhD Retreat 2013

Workshop for PhD students associated with QGM.

2013.05.14 | Jane Jamshidi

Three PhD students at the PhD Retreat 2012

Date Mon 10 Jun Fri 14 Jun
Time 10:00    15:00
Location QGM, Aarhus University

Participants:

Gus Shrader (UC Berkeley)
Jakob Blaavand (Oxford)
Alexandru Chirvasitu (UC Berkeley)
Tom Hawes (Oxford)
Tom Sutherland (Oxford)
Mette Bjerre (AU)
Paolo Masulli (AU)
Dennis H. Pedersen (AU)
Tina Kanstrup (AU)
Jens-Jakob Kratmann Nissen (AU)
Troels Bak Andersen (AU)
Søren Fuglede Jørgensen (AU)
Jens Kristian Egsgaard (AU)

 

Tentative programme:

Monday 10 June                                                                                                                Location: Øv-G31 (1532-314)

09:30-10:00      Coffee/tea in the QGM Lounge (1530-326)

10:00-10:45      Jakob Blaavand (Oxford): An integrable system from doubly periodic instantons

11:15-12:15      Jürg Fröhlich (ETH Zürich) Physical Principles Underlying the Fractional Quantum Hall Effect

12.15 - 14.00     Lunch

14.00 – 14.45    Jens-Jakob Kratmann Nissen (QGM): TBA

14.45 – 15.15    Coffee/tea and cake in the QGM Lounge (1530-326)

15:30-16:30      Jürg Fröhlich (ETH Zürich): NIELSEN LECTURE The problem of dynamics in quantum theory

18.00                Cheese and wine in the Math Staff Lounge

 

Tuesday 11 June                                                                                                                Location: Aud. F (1534-125)

10:00                Coffee/tea outside Auditorium F.

10.30 - 12.00     Site visit (in Aud. F)

12.00 - 12.45     Lunch in the canteen

12.45 – 16.10    Site visit (in Aud. F)

16:20 – 16:45    Panel meets with postdocs and PhD students (QGM Lounge, room 1530-326)

17:00 – 18:00    Seminar by Maxim Kontsevich (IHÉS) TBA

18:00-               After-Site Visit Dinner in the MATH Staff Lounge

 

Wednesday 12 June                                                                                                        Location: Aud. F (1534-125)

09.30 – 10.00    Coffee/tea

10.00 – 11.00    Nigel Hitchin (Oxford):  G-Higgs bundles and mirror symmetry

11.30 - 12.30     Nicolai Reshetikhin (UC Berkeley):  On quantum field theories for space times with boundary

12.30 - 14.00     Lunch

14.00 – 15.00    Vladimir Fock (Strasbourg):  Cluster varieties from Thurston diagrams

15.00 – 15.30    Coffee/tea and cake in the QGM Lounge (1530-326)

 

Thursday 13 June                                                                                                              Location: Kol-G3 (1532-218)

09.30 – 10.00    Coffee/tea and bread rolls in the QGM Lounge (1530-326)

10.00 – 10.45    Troels Bak Andersen(QGM): Finding the minimal number of generators of the defining ideal of fusion rings          

11.15 - 12.00    Gus Schrader (Berkeley): TBA

12.00 - 14.00     Lunch

14.00 – 14.45    Shehryar Sikander (QGM):  Quantum Lyapunov Exponents

14.45 – 15.15    Coffee/tea and cake in the QGM Lounge (1530-326)

15:30-16:30      

 

Friday 14 June                                                                                                                    Location: Kol-G3 (1532-218)

09.30 – 10.00    Coffee/tea and bread rolls in the QGM Lounge (1530-326)

10.00 – 10.45    NN                        

11.15 - 12.00     Alexandru Chirvasitu (Berkeley): Free unitary groups and free fusion rings

12.00 - 14.00     Lunch

14.00 – 14.45    NN (QGM): TBA

14.45 – 15.15    Coffee/tea and cake in the QGM Lounge (1530-326)

 

Abstracts:

Jakob Blaavand (Oxford): An integrable system from doubly periodic instantons

Abstract: We will construct an algebraically completely integrable Hamiltonian system in the moduli space of doubly periodic instantons, by finding a Lagrangian fibration in the moduli space, where the base space is the space of spectral curves associated to holomorphic bundles, and the generic fibre is the Jacobian of the spectral curve in question.

Alexandru Chirvasitu (Berkeley): Free unitary groups and free fusion rings

Abstract: Compact quantum groups (cqgs) are generalizations, in the spirit of non-commutative geometry, of compact groups, and free unitary groups are for cqgs what unitary groups are for ordinary compact groups. I will explain how they are simple (once you mod out a center).

                 More generally, it turns out that cqgs whose Grothendieck (or fusion) rings of representations are "free" in a certain sense are always almost simple as above. This provides an easy way to show that known families of cqgs (e.g. hyperoctahedral ones, in addition to the free unitary groups mentiond before) are simple.

Public/media, Staff, Students, IT, computer science and mathematics , Workshop